

Sub-Task 2.2 – Report on A5 Warm Mix Asphalt

Task 1-111 Collaborative Research Project

Highways England, Mineral Product Association and Eurobitume UK

Project Number: 60523093 November 2017

P

Quality information

Prepared by	Checked by	Approved by	
Abrustat Paras	Chibuzor Ojum	- other	
Mariam Abouabid	Chibuzor Ojum	Jessica Tuck	
Graduate Engineer	Pavement Engineer	Principal Engineer	

Revision History

Revision	Revision date	Details	Authorized	Name	Position
0	3 rd July 2017	Draft for comment	Y	Daru Widyatmoko	Technical Director
1	3 rd August 2017	Comments addressed	Y	Daru Widyatmoko	Technical Director
2	15 th November 2017	Comments from MS addressed	Y	Daru Widyatmoko	Technical Director

Distribution List

# Hard Copies	PDF Required	Association / Company Name	

Prepared for:

Highways England, Mineral Products Association and Eurobitume UK

Prepared by:

Mariam Abouabid Graduate Engineer E: Mariam.Abouabid@aecom.com

AECOM Infrastructure & Environment UK Limited 12 Regan Way Chetwynd Business Park Nottingham NG9 6RZ UK

T: +44 (115) 907 7000 aecom.com

© 2017 AECOM Infrastructure & Environment UK Limited. All Rights Reserved.

This document has been prepared by AECOM Infrastructure & Environment UK Limited ("AECOM") for the sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Introduction6						
	1.1	Scope	6				
	1.2	Demonstration site	6				
	1.2.1	Site location	6				
	1.2.2	Materials used in the demonstration site	7				
2.	Metho	dology	9				
3.	3. Site Surveys						
	3.1	Visual Condition Survey (VCS)	. 10				
	3.1.1	General observations	. 10				
	3.2	Coring Survey	. 15				
4.	Labora	tory Test Results and Analysis	. 17				
	4.1	Mixture Volumetrics	. 18				
	4.2	Indirect Tensile Stiffness Modulus Test Results	. 19				
	4.3	Resistance to Permanent Deformation	. 19				
	4.4	Water Sensitivity	. 21				
	4.5	Binder Analysis	. 21				
5.	Conclu	isions	. 24				
6.	Recon	nmendations	. 25				
Refere	ences		. 26				
Appen	dix A –	Visual Condition Surveys	. 26				
Appen	ppendix B – Core Log Information						
Appen	dix C –	Mixture Volumetrics	. 29				
Appen	dix D –	Indirect Tensile Stiffness Modulus Test Results	. 30				
Appen	dix E –	Wheel Tracking Tests	. 31				
Appen	opendix F – Binder Analysis						

Figures

Figure 1: Demonstration Site within the A5 Grendon to Mancetter Maintenance Scheme (Google maps, 2017	7) 7
Figure 2: Approximate Location of the A5 Grendon to Mancetter Maintenance Scheme	7
Figure 3: Warm Mix Asphalt Foaming Process	8
Figure 4: Image of 2017 Demonstration Site VCS report (See Appendix A)	12
Figure 5: Laboratory Test Instruction	17
Figure 6: Air Voids Procedure C for AECOM 2017 and TRL 2014	18
Figure 7: ITSM Test Results	19
Figure 8: Rut Profile - AECOM 2017	19
Figure 9: Rut Depth at 10,000 Cycles - AECOM 2017	20
Figure 10: Comparing Rut Depths at 1,000 cycles for AECOM 2017 and TRL 2014	20
Figure 11: Water Sensitivity Test Results at 20°C	21
Figure 12: Complex Modulus vs Temperature	23
Figure 13: Phase Angle vs Temperature	23

Tables

Table 1: Production Temperatures	. 9
Table 2: Reclaimed Asphalt Content	. 9
Table 3: Summary of Investigations and Testing	10
Table 4: Photographs of demonstration site, taken in 2014 and 2017	10
Table 5: Summary of VCS Observed Defects	13
Table 6: Core locations	15
Table 7: Summary of Core Log Information	16
Table 8: Wheel tracking results with small scale device	20
Table 9: Recovered Binder Properties – AECOM 2017	22
Table 10: Recovered Binder Properties – TRL 2014 (PPR742, 2014)	22

1. Introduction

This collaborative research task has been carried out by AECOM and sponsored by Highways England, Mineral Products Association and Eurobitume UK. The aim of this task is to review and evaluate the mechanical and performance characteristics of the Warm Mix Asphalt (WMA) installed on the Grendon to Mancetter pavement scheme of the A5 in 2014. The site is a stretch of the westbound carriageway approximately 220 m in length installed with proprietary WMA mixtures for the binder and surface course layers with conventional Hot Mix Asphalts (HMA) as control mixtures.

Warm Mix Asphalt (WMA) technology has the potential for reducing carbon emissions associated with road construction. The lower temperatures used to manufacture these materials mean that less energy is required to produce asphalt materials. This results in reduced carbon footprints in the construction of asphalt pavements. The decrease in emissions provides better working conditions and has an influence in reducing impacts to the environment. Some of the potential benefits from using Warm Mix Asphalts are:

- Reduced emissions during manufacturing and road construction.
- Provides a safer working environment for road construction workers.
- No need for new paving equipment as the same pavement and rollers used for HMA can be used.

The main aim of the project is to inform future incorporation of WMA into the standards and specifications.

1.1 Scope

This sub-task investigates, evaluates and analyses the mechanical characteristics and performance properties of the Grendon to Mancetter pavement scheme of the A5 site that incorporated WMA after 3 years in service. AECOM conducted a visual survey on 10th February 2017 and pavement coring investigation on 13th and 14th February 2017. Findings and analysis from this investigation are presented in comparison to the test results reported in TRL PPR742 (Wayman M, Nicholls J.C., Carswell I, 2014, *Use of lower temperature asphalt in pavement construction, Demonstration site construction, in service performance and specification*). PPR742, 2014 testing was carried out on material collected from the asphalt plant during scheme construction.

1.2 Demonstration site

1.2.1 Site location

The demonstration site is located within a 1.1 km maintenance scheme on the A5 between Grendon and Mancetter in North Warwickshire, United Kingdom. A section of the westbound carriageway of the A5, approximately 220 m in length (Chainage: 2960-3180 m) was inlaid with 110 m length of WMA binder and surface courses and 110 m length of conventional HMA binder and surface courses acting as a control mixture. The production and application of both binder and surface course layers were closely monitored and the laboratory properties of the asphalt mixtures tested to ascertain mechanical and performance properties (PPR742, 2014).

A picture of the site and approximate location are shown in Figure 1 and Figure 2 respectively.

Figure 1: Demonstration Site within the A5 Grendon to Mancetter Maintenance Scheme (Google maps, 2017)

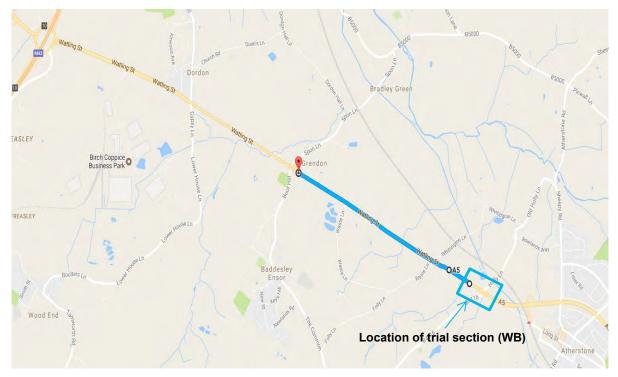


Figure 2: Approximate Location of the A5 Grendon to Mancetter Maintenance Scheme

1.2.2 Materials used in the demonstration site

The mixtures used for the construction of the demonstration site are:

Ι.	Mixture 1	WMA	Binder Course	AC 20 HDM bin 40/60 design
II.	Mixture 2	WMA	Surface Course	AC 14 surface PMB PSV 65
III.	Mixture 3	HMA	Binder Course	AC 20 HDM bin 40/60 design
IV.	Mixture 4	HMA	Surface Course	AC 14 surface PMB PSV 65

There are two broad approaches to manufacturing WMA; foaming processes and additive technologies. The demonstration trials used WMA produced using foaming technology.

Foaming processes create micro bubbles of air within the bitumen that increases mixture workability at lower temperatures compared with HMA. Bitumen foaming can be produced using an injection 'foaming bar' on the asphalt plant, where a controlled quantity of air and water is introduced to the bitumen under pressure. The bitumen surrounds the air/water bubbles which increase the volume of the bitumen thus reducing surface tension. This bitumen foam is sprayed through fine nozzles into the asphalt mixer. Alternatively, water releasing mineral additives such as zeolites may be added to the asphalt mixer, providing a controlled release of moisture which again produces tiny bubbles in the bitumen causing the bitumen to 'foam' and expand. At times, the moisture is added to the aggregates in a controlled manner and delivered to the asphalt mixer box via a cold feed (i.e. no drying takes place). Again, when bitumen is added the water turns to steam and creates foamed bitumen. The WMA foaming process is shown below in Figure 3.

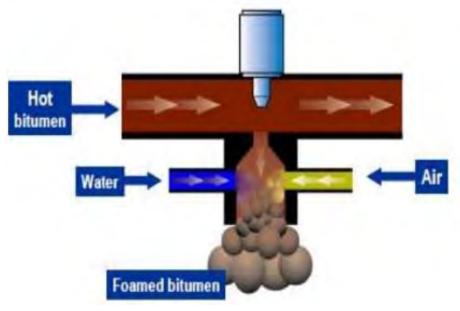


Figure 3: Warm Mix Asphalt Foaming Process

Additive systems generally involve the addition of a low dosage of liquid or solid WMA chemical to the bitumen line or asphalt mixer. A large range of WMA additives are available on the market and include chemical additives (waxes, amides and sulphur) and surfactant based chemical additives. In general, chemical additives function by either reducing the viscosity of the bitumen or by acting as surfactants that work at the interface between the aggregate and bitumen to improve the ability of the bitumen to coat the aggregate and enhance compaction at a lower temperature. Chemical additives may also offer adhesion benefits between bitumen and aggregate. Bitumen suppliers are able to offer bespoke warm mix asphalt bitumen which may have chemical additives preblended within the bitumen.

For the demonstration site, the HMA mixtures were manufactured conventionally and the WMA mixtures were manufactured using a patented 'injection foaming' technique. The target binder content for both binder course mixtures was 4.3% and the target binder content of both surface courses was 5.1% (PPR742, 2014). Production temperatures (as reported in PPR742, 2014) are presented in Table 1.

Table 1: Production Temperatures

Mixture No.	Туре	Course	Mixing Temperature (°C)	
			Mean	Range
1	WMA	Binder	92	88 – 95
2	WMA	Surface	107	92 – 119
3	HMA	Binder	171	149 – 182
4	HMA	Surface	169	141 – 182

Reclaimed asphalt was incorporated in each of the asphalt mixtures. The WMA binder course targeted 25% reclaimed asphalt. HMA binder course also targeted 25% reclaimed asphalt, however, the actual proportion was 6% which is reportedly thought to be due to a combination of grading and high moisture content of the feedstock reclaimed asphalt which would have required some superheating of the aggregates (required to dry the reclaimed asphalt) to temperatures beyond acceptable production plant tolerances. HMA and WMA surface course mixtures included approximately 16% reclaimed asphalt (PPR742, 2014). The proportions of reclaimed asphalt incorporated into the mixtures are shown in Table 2 (PPR742, 2014).

Table 2: Reclaimed Asphalt Content

Mixture No.	Туре	Course	% Reclaimed Asphalt Mean	% Reclaimed Asphalt Range
1	WMA	Binder	25.9	24.4 – 27.2
2	WMA	Surface	15.6	14.9 – 17.1
3	HMA	Binder	5.9	0.0 – 13.0
4	HMA	Surface	15.6	15.2 – 16.4

PPR 742, 2014 reports the site condition in advance of works, details of the construction and material production. PPR 742 also presents an overview of observations and general condition after installation of the demonstration section.

2. Methodology

The proposed methodology and approach for the project comprised of site investigations and laboratory testing to determine material and performance properties in order to establish the condition of the pavement and performance of the asphalt materials. The site surveys and laboratory tests conducted are detailed below in Table 3.

AECOM aimed to replicate the testing undertaken by TRL in 2014. The following points are important to note:

- TRL testing was carried out on bulk material sampled from the works which were compacted in the laboratory. AECOM 2017 investigation and testing are based on the cored material. As such a direct comparison of 2014 and 2017 test results is not possible due to the differences in sample preparation.
- The following testing reported by TRL does not form part of this study:
 - Four point bending stiffness test to BS EN 12697-26 Annex B
 - Fatigue resistance to BS EN 12697-24 Annex D
 - Large scale wheel tracking to BS EN 12697-22

Table 3: Summary of Investigations and Testing

Investigation	Standard
Visual Condition Survey (VCS)	Site Survey
Coring Survey	Site Survey
Volumetrics (Maximum Density and Air Voids)	BS EN 12697-5, BS EN 12697-6 and BS EN 12697-8
Compositional Analysis	BS EN 12697-3
Penetration Index	BS EN 1426
Softening Point	BS EN 1427
Dynamic Shear Rheometer (DSR)	BS EN 14770
Water Sensitivity	BS EN 12697-12
Wheel Tracking	BS EN 12697-22 (Small Scale)
Indirect Tensile Stiffness Modulus (ITSM)	BS EN 12697-26

3. Site Surveys

3.1 Visual Condition Survey (VCS)

The Visual Condition Survey (VCS) covering the demonstration site was conducted in daylight on 10th February 2017 from the footpath. The aim was to identify and record the type, level and severity of visible distress on the surface of the road. Findings from the VCS are discussed here and the full VCS report is presented in Appendix A.

3.1.1 General observations

Table 4 presents general views of the scheme from TRL survey in 2014 which was conducted 8 hours after opening to traffic, alongside the corresponding view taken during AECOM's VCS in 2017.

Table 4: Photographs of demonstration site, taken in 2014 and 2017

Images were taken in 2014 (8 hours after completion of the scheme) (taken from TRL PPR742, 2014)

2014 WMA section (looking in EB direction)

Images were taken during Feb 2017 AECOM VCS

2017 WMA section (looking in WB direction)

2014 Boundary between WMA and existing surface

2014 Boundary between WMA (right) and HMA (left)

2014 Boundary between HMA & existing surface (looking in Eastbound direction)

2017 Boundary between WMA and existing surface

2017 Boundary between WMA (bottom) and HMA (top)

2017 Boundary between HMA & existing surface (looking in Westbound direction)

Observed defects include surface cracking, rutting, crazing and loss of aggregates (fretting). An image of the 2017 VCS (see Appendix A for full report) is shown in Figure 4. Summary of observed defects detailed in Table 5.

The VCS found areas of distress in the form of crazing and possible subsidence which is suspected to be a result of underlying issues in the pavement foundation and/or substrate.

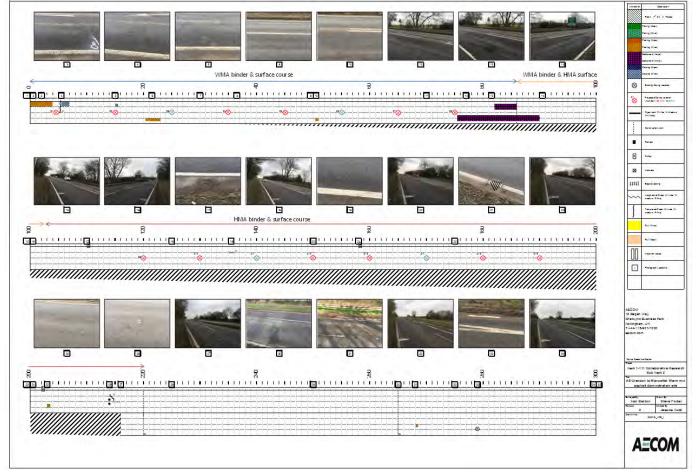


Figure 4: Image of 2017 Demonstration Site VCS report (See Appendix A)

Table 5: Summary of VCS Observed Defects

Section	Chainage	Observation	Photograph
		General observations: Fretting and/or 'open' texture was evident	
	0-92	in areas throughout the section. Cracking and crazing were	
	0-32	observed with areas of settlement. In some areas there appeared	
		to be some bitumen bleeding in the wheel tracks.	
	0-5m	Possible segregation and/or fretting of the surface course material	Picture 3
	0-511	at the start of the demonstration section.	Picture 3
		Extended minor crazing on the pavement surface with wide	
	5-7m	transverse cracks and block cracking. Similar defects were	Picture 4
		observed during the VCS conducted by TRL in 2014 pre-works.	
Narm Mix Asphalt	16m	A fatty patch on the surface was observed. There is also evidence	Disture 5
	16m	of bitumen-rich areas in the wheel tracks.	Picture 5
	21-23m	This section had signs of visible fretting and loss of fine materials	Distance 0
		on the surface course.	Picture 6
		This section had signs of visible fretting and loss of fine materials	Disture 10
	51m	on the surface course.	Picture 10
		Major rutting and extended crocodile crack defects were	
	75-90m	observed. In some spots, there was a loss of surface course	Dicture 12
		materials causing potholes. Similar defects were observed in this	Picture 13
		location in the VCS conducted by TRL in 2014 pre-works.	
		General observations: Some local fretting was observed along	
	92-223m	with cracking. In some areas there appeared to be some bitumen	
		bleeding in the wheel tracks.	
	405 400	Minor longitudinal cracks. Visible signs of excessive bitumen on	Picture 19
	135-136m	the surface of the road synonymous with fatting/bleeding.	
Hot Mix Asphalt	203m	Visible signs of fretting observed	Picture 25
		Medium transverse and longitudinal cracks were observed.	Picture 26
	204-205m	Rutting and crazing were recorded in this location as in the TRL	
		2014 VCS pre-works.	

AECOM 2017 VCS Photo log

Picture 3: WMA

Picture 4: WMA

Picture 5: WMA

Picture 6: WMA

Picture 10: WMA

Picture 13: WMA

Picture 19: HMA

Picture 25: HMA

There is evidence of underlying issues (possible subsidence) in certain areas of the demonstration scheme which is observed in the form of rutting, cracking and crazing. It was observed that the recorded defects were located in close proximity to defective areas as identified by TRL in surveys conducted in 2014. This strongly suggests fundamental underlying issues which may be related to the condition of the foundation and/or substrate. Further testing and analysis are required to ascertain pavement condition of the underlying layers. This falls outside the scope of this project.

Fretting of the surface course materials was also observed in some areas which were noted to a greater extent in the WMA section. It is noted that photographs of the WMA section taken 12 hours after completion of the works in 2014 (shown in Table 4) appear to have a variable surface finish with some areas appearing more open in texture than others.

3.2 Coring Survey

A coring survey is an intrusive survey test performed typically by using a rotary coring rig at preselected locations across the site (after all utility drawings provided have been reviewed and a permit to dig issued). Core logs provide information on the pavement material type, layer thickness, presence of crack and material condition. In addition to this, the retrieved cores provide samples for subsequent laboratory testing to confirm material properties and condition. The cores were extracted at 10 m intervals from the lane centre, with the exception of cores 15 and 16 which were taken from the nearside wheel path due to the location of buried services.

A total of 16 cores were extracted, comprising of 12 x 150 mm cores (shown as red \otimes on the VCS plan) and 4 x 200 mm cores (shown as blue \otimes on the VCS plan) as shown in Appendix A.

	Core Ref	Dir.	Lane	Ch. (m)	X-Pos	Core Dia. (mm)	Material
	1	WB	CL1	5	LC	150	WMA
	2	WB	CL1	15	LC	150	WMA
halt	3	WB	CL1	25	LC	200	WMA
(Aspl	4	WB	CL1	35	LC	150	WMA
Warm Mix Asphalt	5	WB	CL1	45	LC	150	WMA
War	6	WB	CL1	55	LC	200	WMA
	7	WB	CL1	65	LC	150	WMA
	8	WB	CL1	75	LC	150	WMA
	9	WB	CL1	120	LC	150	HMA
	10	WB	CL1	130	LC	150	HMA
Hot Mix Asphalt	11	WB	CL1	140	LC	200	HMA
lix As	12	WB	CL1	150	LC	150	HMA
Hot N	13	WB	CL1	160	LC	150	HMA
	14	WB	CL1	170	LC	200	HMA
	15	WB	CL1	180	NSWP	150	HMA
	16	WB	CL1	190	NSWP	150	HMA

Table 6: Core locations

LC denotes Lane Centre

NSWP denotes near side wheel path

Table 7 summarises the core log information. The Tar Spray Test for Poly Aromatic Compounds (PAC) was conducted to check for the possible presence of tar on the cores. It was observed that cores 9, 10, 11 and 13 showed the possible presence of tar on Layer 3 of the cores.

It was observed that the surface and binder courses were bonded together. However, the lower layers were not well bonded, especially at the interface between the asphalt and concrete layers. In addition, there were visible signs of loss of material mostly between the asphalt and cement bound layers.

Appendix B presents the core log information.

Table 7: Summary of Core Log Information

Nominal Core Diameter [mm]	Core Number	Total Asphalt Thickness [mm]	Description
General observat	ions		In general, three asphalt layers were observed with layers 1 and 2 comprising the trial materials, layer 3 was largely de-bonded and broken up and the cement bound layers (referred to in the core logs as concrete) was found to be broken up in some locations.
150	1	140	3 asphalt layers identified. No bond between the asphalt and concrete layers (Layers 3 and 4). 3 rd layer broken with the loss of material. Visible longitudinal cracks on the concrete layer (Layer 4).
150	2	140	3 asphalt layers identified. No bond between asphalt and concrete layers. 3 rd asphalt layer broken with the loss of material on both layers.
200	3	130	3 asphalt layers identified. No bond between asphalt and concrete layers. 3 rd layer broken with the loss of material.
150	4	110	3 asphalt layers identified. No bond between asphalt and concrete layers. 3 rd layer broken with the loss of material.
150	5	135	3 asphalt layers identified. No bond between asphalt and concrete layers (Layers 3 and 4). 3 rd layer broken with the loss of material. Concrete layer is broken up.
200	6	170	3 asphalt layers identified. No bond between asphalt and concrete layers. 3 rd layer broken with the loss of material.
150	7	120	3 asphalt layers identified. No bond between both Layers 2 and 3, and Layers 3 and 4. 3 rd layer broken with the loss of material.
150	8	154	3 asphalt layers identified. No bond between both Layers 2 and 3, and Layers 3 and 4. 3 rd layer broken up with the loss of material.
150	9*	205	3 asphalt layers identified. No bond between asphalt and concrete layers (Layers 3 and 4). 3 rd layer broken up with the loss of material.
150	10*	175	3 asphalt layers identified. No bond between both Layers 2 and 3, and Layers 3 and 4. 3 rd layer broken and 4 th layer disintegrated with the loss of material.
200	11*	135	3 asphalt layers identified. 3 rd layer damaged to face.
150	12	150	3 asphalt layers identified. No bond between asphalt and concrete layers (Layers 3 and 4). 3 rd layer damaged to face and delaminated.
150	13*	150	3 asphalt layers identified. No bond between asphalt and concrete layers (Layers 3 and 4). 3 rd layer broken up with the loss of material.
200	14	170	3 asphalt layers identified. No bond between both Layers 2 and 3, and Layers 3 and 4. 3 rd layer disintegrated with the loss of material.
150	15	175	3 asphalt layers identified. No bond between both Layers 2 and 3, and Layers 3 and 4. 3 rd layer broken. 3 rd layer disintegrated with the loss of material.
150	16	170	3 asphalt layers identified. No bond between both Layers 2 and 3, and Layers 3 and 4. 3 rd layer broken and 3 rd layer disintegrated with the loss of material.

*PAK marker indicates compounds indicative of the presence of tar.

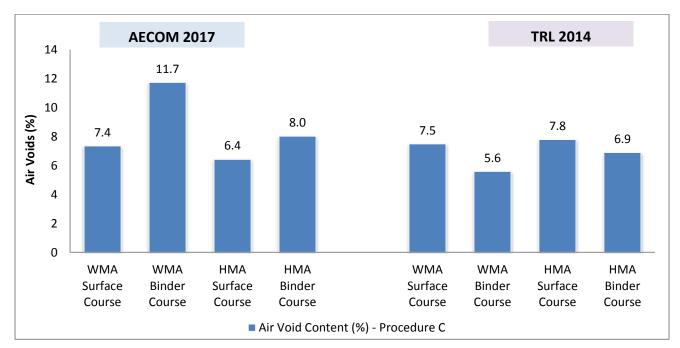
Appendix B presents the detailed core log information.

4. Laboratory Test Results and Analysis

Figure 5 summarises laboratory tests carried out on cores obtained from the sampling and site investigation of the A5 between Grendon and Mancetter demonstration sections.

Jai C	oject Title : Task b Number : 6052 Cost Code : Wan f Creation : AEC	3093 m mix cos	st code		9				
Page 1 of 1		2. Burk Density Using Density Mathod B & C 10. ITSM @ 20°C 17. WTT BS @ 60°C 17. WTT BS @ 60°C		Water sensitivity BS EN 12697-12 Method A	5. Binder Recover BS EN 12697-3, Followed by Empirical Pen and SP	11, Maximum Density	1. Air Voids Using Density Method B & C	Ful Sweep DSR	
		26	22	4	4	4	4	26	2
Core	Layer				H.				10
1	WMA Surface WMA Binder	x	×		0	(×)		8	×
1	WMA Binder WMA Surface	x	x	-		Comb		x	x
2	WMA Binder	~	*		Pro V	ne co		*	-
2	WMA Surface	×	×			ne v		x	X
4	WMA Binder	×	x					x	
4	WMA Binder	x	x	-	~	× a		x	-
5	WMA Surface WMA Binder	×	×		(x)	×		x	-
5	WMA Surface	x	x		$- \uparrow \uparrow$		Comp C	x	
7	WMA Binder	x	x		ל			×	-
8	WMA Surface	×	×		~ 2		* 5	x	-
8	WMA Binder	×	x					x	-
9	HMA Surface	×	x		~	X		×	X
9	HMA Binder	*	×	-	(x)			x	1 2
10	HMA Surface	*	×		(ह)	XA S		x	xo
10	HMA Binder	x	x		(x)	phe xo		x	-
12	HMA Surface	×	*					x	X
12	HMA Binder	×	*		A			x	
13	HMA Surface	x	x		1			x	
13	HMA Binder	8	*		x Ne		30	x	1
15	HMA Surface	.8	8			1	x Combine	x	
15	HMA Binder	x	x		×		ne xb	x	
16	HMA Surface	*	*				x R	x	
16	HMA Binder					1.00			
3	WMA Binder	x		×.				x	
6	WMA Binder	. 8	1	x		1200		x	
11	HMA Binder	.8	t	x				x	
14	HMA Binder	x		x				x	

Figure 5: Laboratory Test Instruction

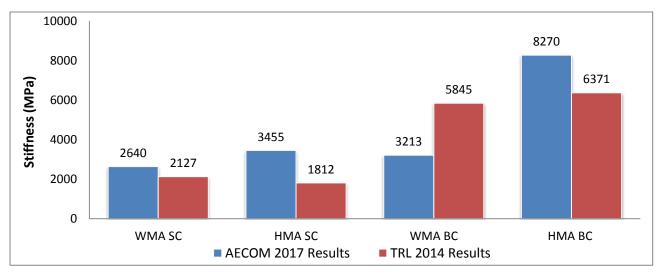

*Samples were combined as indicated to produce sufficient sample size for testing.

4.1 Mixture Volumetrics

The bulk and maximum densities including the air void content test results are presented in Appendix C. The maximum densities of samples were measured in accordance with BS EN 12697-5. The bulk densities of the samples were measured in accordance with BS EN 12697-6 to Procedures B (Saturated Surface Dry – SSD) and Procedure C (Sealed).

As a guide, Annex A of the BS EN 12697-6 states that Procedure B – SSD method is most suited for continuously graded materials such as asphalt concrete (with relatively small pores) having void contents up to approximately 5%. For materials which give rise to large diameter voids in the specimen (e g. stone mastic asphalt) up to approximately 4%, the method is also applicable". "Procedure C is more suitable for measuring the bulk density of bituminous specimens with air void levels up to 15%".

The mixture volumetrics was obtained for both the surface and binder courses using an average of six cylindrical specimens cored from the site. The test results for both Procedures B and C are presented in Appendix C. Comparisons between the mixture volumetrics following testing of samples by AECOM in 2017 and TRL in 2014 (reported in PPR 742, 2014) is shown below in Figure 6.



It should be noted that TRL in 2014 analysed the same number of specimens but made use of laboratory manufactured slabs cored and tested in accordance with BS EN 12697-6 using three procedures: Procedure A (Dry), Procedure C (Sealed) and Procedure D (Dimensions) (Wayman et al., 2015). On this basis, the measured results are not directly comparable and the 2014 testing is not considered to accurately represent the material air voids in service. The air voids for WMA and HMA are higher than would be expected for AC 20 binder course materials. WMA binder course contains 25% recycled asphalt which could contribute to variation in density. This is because the specific gravity of the recycled material may vary to a greater extent than virgin material. PPR742, 2014 reports the average in-situ density measurements as 9.5% and 7.6% for WMA and HMA binder courses respectively. Air voids measured on binder course during this 2017 survey are higher than those recorded in situ.

4.2 Indirect Tensile Stiffness Modulus Test Results

The Indirect Tensile Stiffness Modulus (ITSM) test was conducted in accordance with BS EN 12697-26 at 20°C. The test results are presented in Appendix D. The test results are analysed and summarised below in Figure 7.

Figure 7: ITSM Test Results

The test results as conducted in 2017 by AECOM show that the HMA mixtures have higher stiffness values in comparison to the WMA mixtures for Surface Course (SC) and Binder Course (BC). AECOM 2017 stiffness results would be expected to be higher than testing conducted by TRL in 2014 due to binder ageing. However, TRL testing is based on laboratory manufactured samples whilst AECOM results are based on cores and therefore, results are not directly comparable.

4.3 Resistance to Permanent Deformation

Wheel Tracking Tests were conducted to ascertain the resistance of the asphalt mixtures to permanent deformation. The test was conducted in accordance with BS EN 12697-22, Procedure B in Air at 60°C. Two Binder Course (BC) samples were used in ascertaining resistance to permanent deformation of the WMA and HMA. Appendix E presents the wheel tracking test results. The mean rut profiles are shown below in Figure 8.

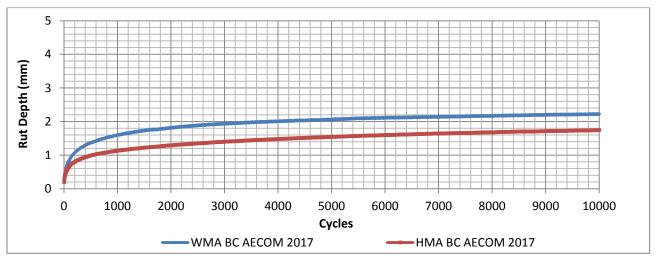


Figure 8: Rut Profile - AECOM 2017

Table 8 presents wheel track slope and proportional rut depth results from AECOM 2017 survey. These results were not available in the TRL report.

Table 8: Wheel tracking results with small scale device

	AECOM 2017						
Material	Mean wheel track slope (WTS _{AIR} mm/1000cycles)	Mean Proportional Rut Depth (PRD %)					
WMA BC	0.03	5.8					
HMA BC	0.04	4.2					

Figure 9 shows that the rut depth profile of the WMA and HMA materials with rut depths < 3 mm after 10,000 cycles at 60° C (Procedure B).

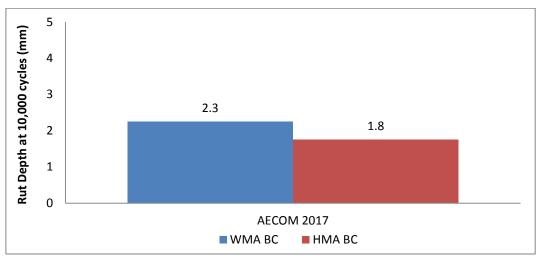


Figure 10 shows the rut depth at 1,000 cycles (Procedure A) used in comparing the resistance to permanent deformation of the AECOM 2017 samples WMA and HMA BC mix. Both rut depths were found to be < 3 mm.

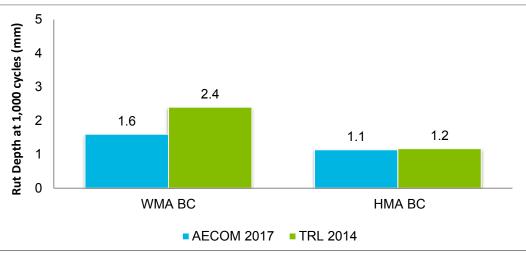


Figure 10: Comparing Rut Depths at 1,000 cycles for AECOM 2017 and TRL 2014

Note for Figure 10: TRL results are based on laboratory compacted samples and not cored samples from the site. Further to this, BS EN 12697-22 Procedure A was followed in ascertaining the rut depth profile.

4.4 Water Sensitivity

Moisture damage can be defined as the loss of strength of asphalt mixtures due to the presence of water. Moisture damage accelerates as moisture permeates and weakens the mastic, making it more susceptible to damage following cyclic loading.

Resistance to moisture damage is evaluated by means of the water sensitivity test in accordance with BS EN 12697- 12 using Method A for the Indirect Tensile Stiffness Ratio, ITSR. Ten cylindrical cored specimens, extracted from the site were split into two subsets. Each one is tested for tensile strength at 20°C.

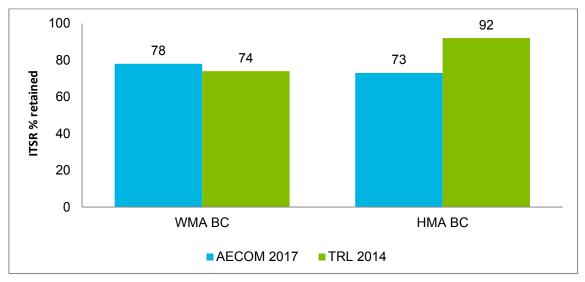


Figure 11: Water Sensitivity Test Results at 20°C

Figure 11 shows that the ITSR values for all the binder course mixtures are above 70% which suggests good resistance to water damage. The WMA BC showed similar test results between the AECOM and TRL samples. The HMA had variable test results with values of 92% for the TRL sample in comparison to 73%. It must be noted that samples used for testing by TRL were laboratory manufactured as opposed to samples obtained from the site. Similar ITSR values are obtained from WMA and HMA mixtures (AECOM and TRL).

4.5 Binder Analysis

The original binder properties used in producing the WMA and HMA are detailed below:

I.	Mixture 1	WMA	Binder Course	AC 20 HDM bin 40/60 design
II.	Mixture 2	WMA	Surface Course	AC 14 surface PMB PSV 65
III.	Mixture 3	HMA	Binder Course	AC 20 HDM bin 40/60 design
IV.	Mixture 4	HMA	Surface Course	AC 14 surface PMB PSV 65

The Dynamic Shear Rheometer (DSR) was used to evaluate and provide insight into the rheological properties of the recovered bitumen from the Grendon to Mancetter pavement scheme. The binder was recovered using the rotatory evaporator in accordance with BS EN 12697-3 (CEN, 2005a). Following recovery of the binder, the penetration and a softening point of the binders were obtained in accordance with BS EN 1426 (CEN, 2007a) and BS EN 1427 (CEN, 2007b) respectively. These result sheets are presented in Appendix F.

Table 9 summarises the penetration and softening point test results for the samples recovered from the site by AECOM.

	2017 Site Review						
	Layer	Penetration [dmm]	Softening Point [°C]				
Warm Mix Asphalt	Surface Course	87	49.0				
	Binder Course	42	63.8				
Hot Mix Asphalt	Surface Course	82	50.4				
	Binder Course	50	55.2				

Table 9: Recovered Binder Properties – AECOM 2017

The test results show that the recovered binder for the binder course has not aged significantly taking into account the fact that a 40/60 paving grade bitumen was used in producing the asphalt mixtures. To check these properties, the HMA binder course recovered bitumen was placed in the oven at 70°C overnight, then had further time on the rotary evaporator and were retested. The penetration grade did not change significantly following this process. To check these properties, the HMA binder course recovered bitumen at 70°C overnight, then had further time on the rotary evaporator and were retested. The penetration grade did not change significantly following this process. To check these properties, the HMA binder course recovered bitumen was placed in the oven at 70°C overnight, then had further time on the rotary evaporator and were retested. The penetration grade did not change significantly following this process.

Evaluating test results provided by TRL in 2014, it was observed that the penetration and softening point test results were completed only for the binder course. The penetration and softening point test results are shown in Table 10.

	TRL 2014					
	Layer	Penetration (dmm)	Softening Point (°C)			
Warm Mix Asphalt	Surface Course	-	-			
	Binder Course	28	60.2			
Hot Mix Asphalt	Surface Course	-	-			
	Binder Course	22	64.2			

Table 10: Recovered Binder Properties – TRL 2014 (PPR742, 2014)

The major observation taking into account test results as presented in Table 10 was in the reported penetration values which show significantly lower penetration values (28 dmm and 22 dmm) for the new binder course asphalt mixtures than would be expected for the relatively unaged 40/60 penetration grade bitumen.

The binder rheological properties were tested in accordance with BS EN 14770. The complex modulus as a function of the temperature is presented below in Figure 12. The test was conducted for the surface course WMA and HMA mixtures.

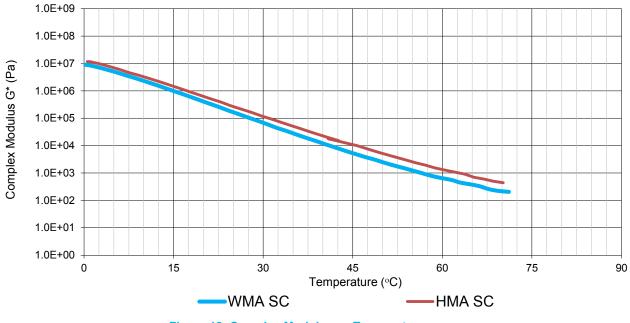


Figure 12: Complex Modulus vs Temperature

Figure 13 presents a plot of the phase angle as a function of temperature. The result shows that at increasing temperatures, the phase angles increase to a more viscous state.

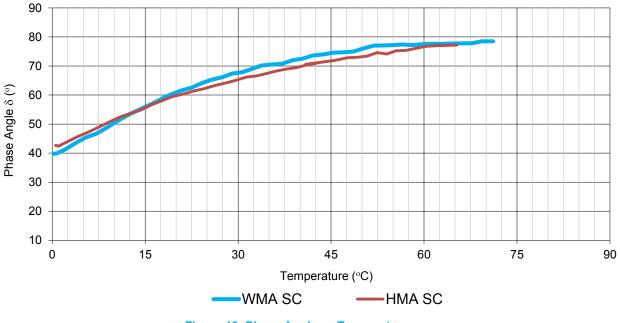


Figure 13: Phase Angle vs Temperature

Figure 12 and Figure 13 shows similar binder rheological properties between the WMA and the HMA Surface Course (SC). This indicates that most probably, the same PMB was used in the production of the asphalt mixtures. The initial/original rheological properties of the PMB were not available to facilitate further comparative analysis.

5. Conclusions

The demonstration site on the Grendon to Mancetter pavement scheme of the A5 provides the comparative performance of WMA manufactured using foaming technology and HMA binder and surface courses. The scope of the work was to review and evaluate the mechanical and performance characteristics of the Warm Mix Asphalt (WMA) installed on the Grendon to Mancetter pavement scheme of the A5 in 2014 and provide a detailed report on findings from the investigation. The surveys and tests undertaken comprised of Visual Condition Survey (VCS), Coring Survey, Mixture Volumetrics, Indirect Tensile Stiffness Modulus (ITSM) tests, Resistance to Permanent Deformation, Moisture Susceptibility Tests and Binder Rheology using the Dynamic Shear Rheometer (DSR).

The VCS and cores suggest that the underlying site conditions may have had a significant influence on its suitability as a trial site. Given the deterioration of the underlying base course, and lack of bond between layers, this seems to have influenced the performance of both the HMA and WMA and as such it may not be advisable to draw weighty conclusions on the performance of WMA on the basis of this demonstration site alone. It would be difficult to conclude that WMA (or HMA) on this site has performed "better (or worse)" or in excess of reasonable expectations. TRL PPR742, 2014 also indicates challenges experienced in performing the trial which may have additionally adversely influenced the general outcome.

The VCS showed that the most common defects include longitudinal and traverse surface cracking, depressions or signs of rutting on certain sections of the road surface, crazing of the surface and loss of aggregate (fretting). In general, the WMA section exhibited more signs of deterioration than HMA. However, many of the defects are suspected to be attributed to issues in the underlying layers and possible subsidence and as such the support provided by the pavement foundation may not be uniform across the sections. A visual survey was undertaken by TRL before the demonstration scheme took place (reported in PPR742, 2014) exhibited similar defects in the same locations. The coring information showed a significant lack of bond between the asphalt and concrete layers irrespective of the section in which the cores were obtained from and the 3rd asphalt layer (existing material not replaced as part of the demonstration works) was in poor condition and deteriorated during the coring operation.

The air void contents reported varied significantly and were found to be higher than expected. Higher air void contents may indicate that these asphalt materials could be susceptible to increased oxidation and permeability. WMA air voids were found to be higher than HMA. High air voids may result in increased susceptibility to the ingress of water into the pavement structure.

The mean rut depths for the WMA and HMA binder course were < 3 mm after 10,000 cycles (tested at 60°C in accordance with BS EN 12697-22). WMA rut depth was found to be slightly higher than HMA which could be attributed to higher air voids, the difference in grading which may be associated with the recycled content, or possibly the binder properties. The proportional rut depth and wheel track slope fall within specified limits outlined in PD 9961:2015 Table B4 for asphalt concrete for very heavily stressed sites requiring very high rut resistance.

The samples tested for moisture susceptibility showed ITSR values for all the binder course mixtures exceeded 70% indicating adequate resistance to water damage of the mixtures. The binder test results recovered from AECOM in 2017 show penetration grade values of 42 dmm and 50 dmm. The penetration grades measured for the WMA and HMA binder course materials are higher than expected for material which has gone through the installation process and has been in service for three years.

The recycled content of the mixtures may have an effect on the recovered binder properties and it is noted that the WMA binder course had a higher proportion of reclaimed asphalt than the HMA. It is not known whether the virgin bitumen added was of a softer grade than 40/60 pen to enable the overall penetration grade to fall within the required range. In addition, the recovered binder properties were higher than those measured by TRL in 2014. This may be due to a difference in sample preparation (recovered from cores vs bulk plant material) or it could be attributed to variation in the recycled components. Details of the PMB used for the surface course were not provided. The WMA and HMA PMB penetration grades were found to be similar with WMA having slightly higher penetration grade and lower softening point than HMA surface course which agrees with the hypothesis that WMA undergoes less heating and ageing during installation.

Findings related to the bitumen properties did not present a clear benefit in performance or ageing of the WMA in comparison to the HMA materials. However, visual condition along with air void content suggests that the HMA is in a better condition than the WMA.

6. Recommendations

It is understood that maintenance of the trial site was undertaken in June 2017 to address the defects associated with underlying issues at the site. As such the trial site is no longer available for further monitoring.

Track record on the use of WMA in the UK and overseas suggested many benefits including good in service performance. WMA is used as standard in a number of Local Authorities, for example Norfolk CC and Staffordshire CC. In addition, WMA has been used on the Strategic Road Network on major roads with Departures having been approved for schemes with short possession to enable a shorter period prior to overlay and opening to traffic. It is therefore recommended to further explore the potential benefits from using WMA by monitoring other existing WMA asphalt sites in the UK and carrying out further trials involving different types of WMA to monitor their performance in service. This will allow developing best practice guide for design, selection and installation of WMA to meet performance requirements for use on strategic road network.

References

British Standards Institution, "Bitumen and bituminous binders. Determination of needle penetration", BS EN 1426: 2015.

British Standards Institution, "Bitumen and bituminous binders. Determination of the softening point - Ring and ball method", BS EN 1427: 2015.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 1: Soluble Binder Content", BS EN 12697-1: 2012.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 2: Determination of Particle Size Distribution", BS EN 12697-2: 2015.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 3: Bitumen Recovery: Rotary Evaporator", BS EN 12697-3: 2012.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 5: Determination of maximum density of bituminous specimens", BS EN 12697-5: 2009.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 6: Determination of bulk density of bituminous specimens", BS EN 12697-6: 2012.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 8: Determination of void characteristics of bituminous specimens", BS EN 12697-8: 2003.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 12: Determination of the water sensitivity of bituminous specimens", BS EN 12697-12: 2003.

British Standards Institution, "Bituminous mixtures – Test methods for hot mix asphalt. Part 22: Wheel Tracking", BS EN 12697-22: 2003.

British Standards Institution "Bituminous mixtures - Test methods for hot mix asphalt. Stiffness," BS EN 12697-26:2012.

British Standards Institution "Bitumen and bituminous binders - Determination of complex shear modulus and phase angle - Dynamic Shear Rheometer (DSR)", BS EN 14770:2012.

Ojum, C., and Widyatmoko, I., 2016. Influence of Oxidative Hardening and UV Light on Ageing of Thin Surfacings – Task 409: Collaborative Research into the Next Generation of Asphalt Surfacings Sub Task 2 [409 (4/45/12)ARPS)]

Wayman, M., Nicholls, J.C. and Carswell, I., 2015. Use of lower temperature asphalt in pavement construction: Demonstration site construction, in service performance and specification (No. PPR 742).

Appendix A - Visual Condition Survey

Appendix A – Visual Condition Surveys

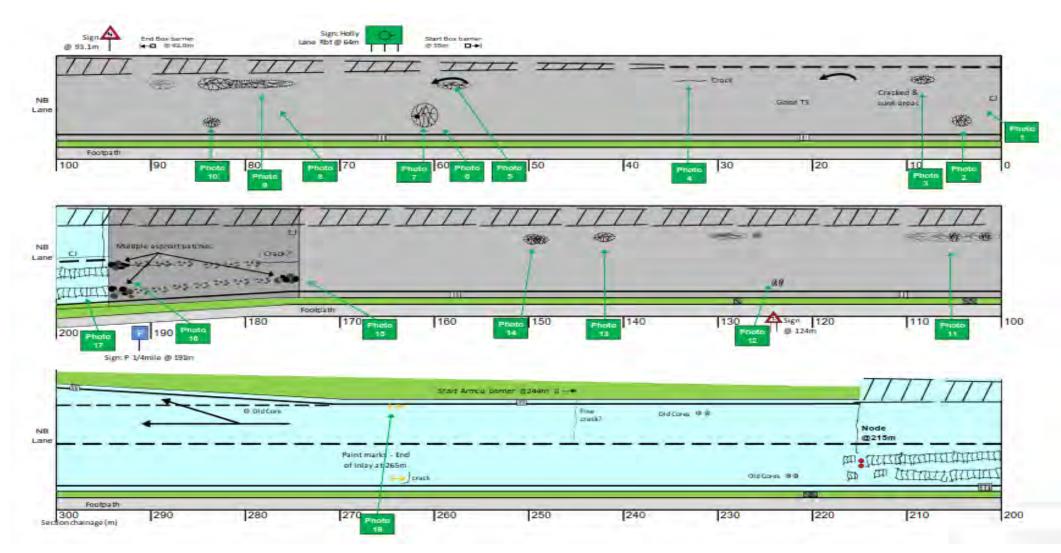
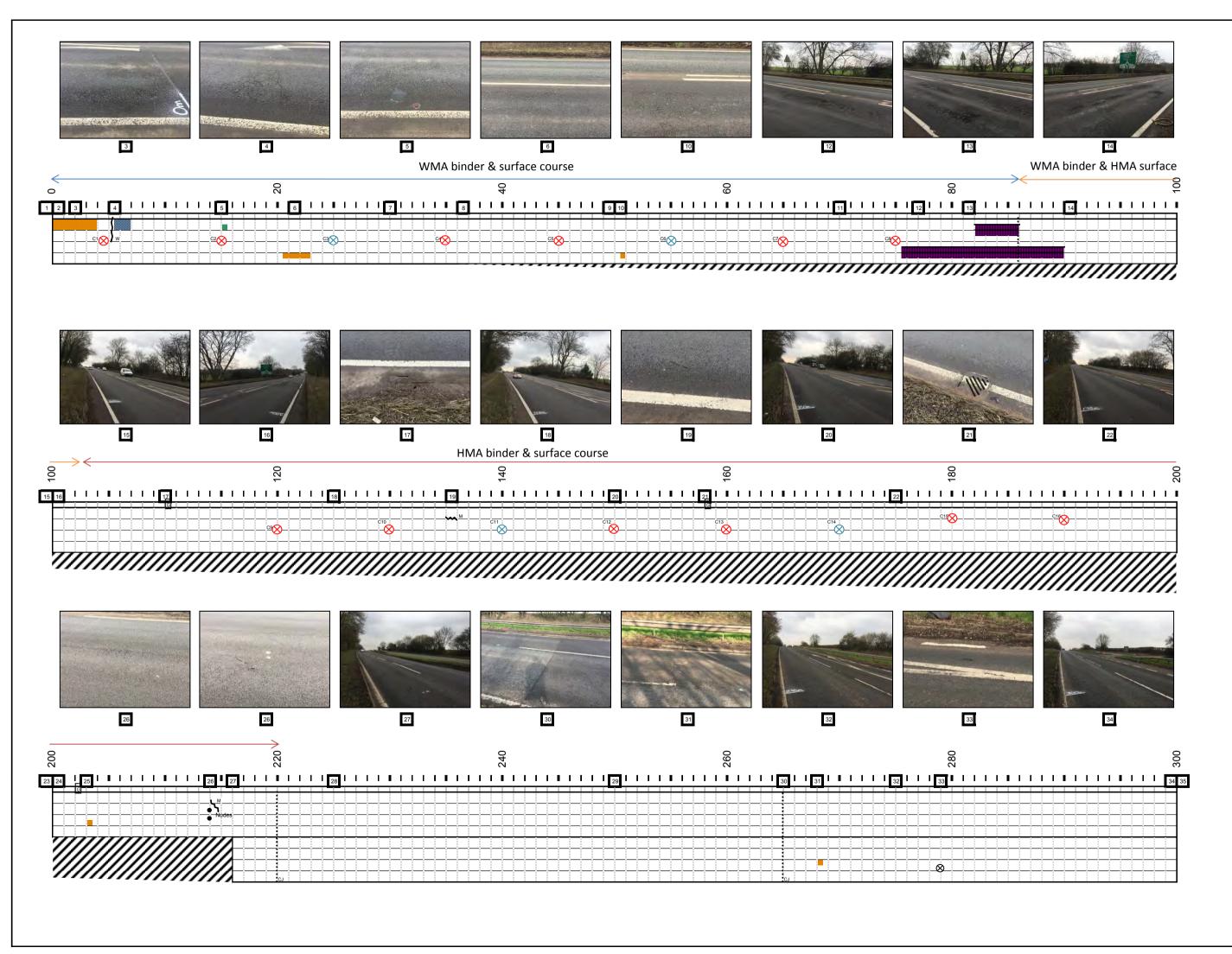



Figure A.1-1: Visual Condition Surveys Conducted by TRL in 2014

Annotation	Description					
	Patch (✓ Ok, X Failed)					
	Fatting (Major) Fatting (Minor)					
	Fretting (Major)					
	Fretting (Minor)					
	Settlement (Major)					
	Settlement (Minor) Crazing (Major)					
	Crazing (Minor)					
\otimes	Existing Coring Location					
	Proposed Coring Location (Number) 150 mm / 200 mm					
	Open Joint (F=fine, M=Medium, W=Wide)					
	Construction Joint					
	Pothole					
G	Gulley					
⊠	Manhole					
\$\$\$\$\$	Edge Cracking					
	Longitudinal Crack (W-wide, M- medium, F-fine)					
}	Transverse Crack (W-wide, M- medium, F-fine)					
	Rut (Minor)					
	Rut (Major)					
	Induction Loops					
4	Photograph Locations					
AECOM 12 Regan Way Chetwynd Business Park Nottingham, UK T +44-115-907-7000 aecom.com						
Do Not Scale this Sketch Project Task 1-111 Collaborative Research Sub Task 2						
Title A5 Grendon to Mancetter Warm mix asphalt dominstration site						
Surveyed By: Tom B						
Revision: 0	Chcked By: Jessica Tuck					
Drawing No.:	554218_VCS_1					
A	ECOM					

Appendix B – Core Log Information

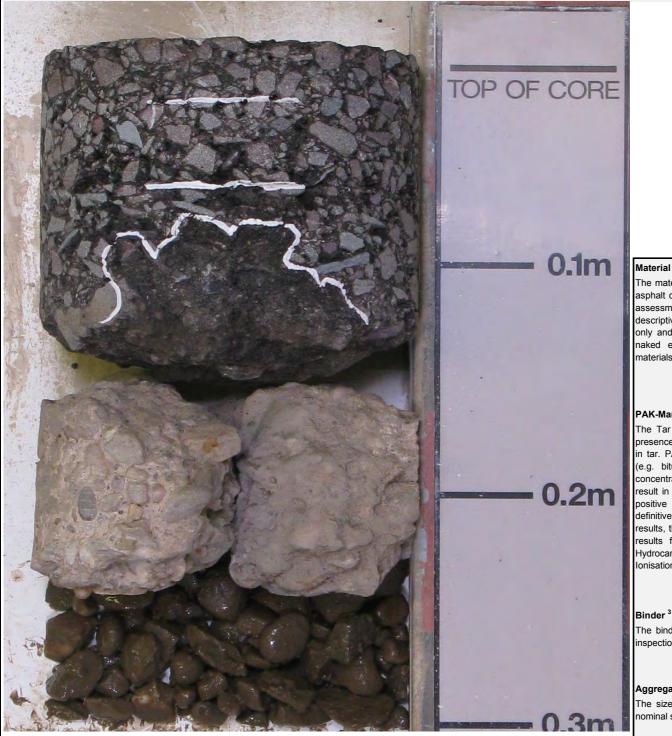
In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 01 Cored / Logged By : TB / RBB Date Cored / Logged : 13-02-17 / 22-02-17

Nominal Diameter : 150mm

OSGR: SP 29510, 98451

Scheme : Task 1-111 A5 Warm mix Trials


Survey Ch. 5m

Notes: Cored adjacent to area of Crazing and Depression

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.66m

	Depth	ı (mm)	T 1 · 1		Suitable for			Aggr	egate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	28	28	Asphalt Surfacing	No	-ve	Bitumen	14	Crushed Rock
2	28	64	36	Asphalt Concrete (voided)	Yes	-ve	Bitumen	14	Crushed Rock
3	64	140	76	Asphalt Concrete (broken @ base and voided)	No	Inconclusive	Inconclusive	20	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	140	300	160	Concrete - Type D Voids (broken up)	No	n/a	Cement	20	Crushed Rock/Gravel
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

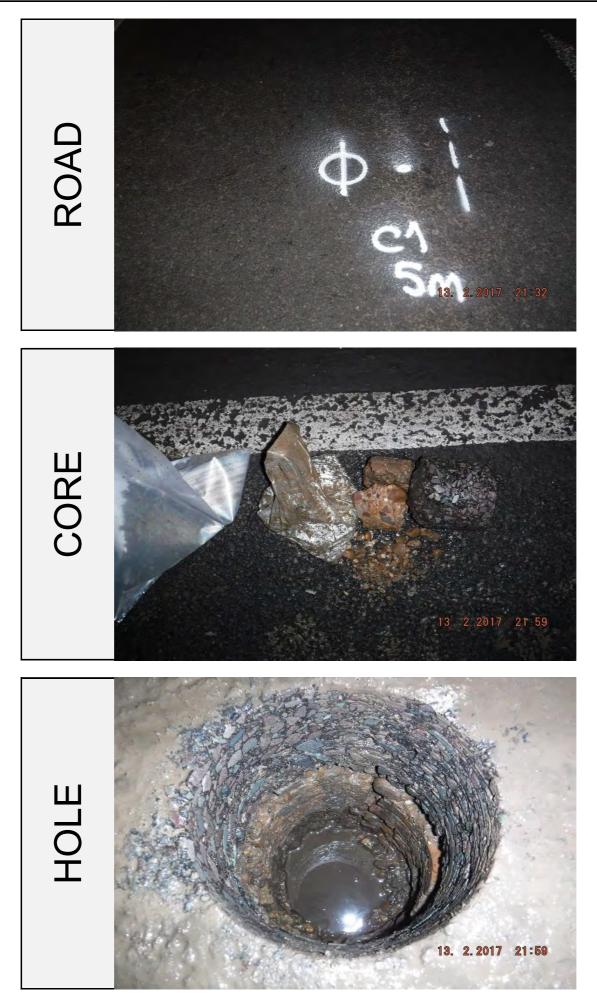
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessmen only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction material (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

The binder type is assessed based on visual and aromatic nspection. The PAK-Marker result is also considered.

Aggregate Size ⁴


The sizes indicated are given as the best estimate of the nominal size of the material

In Accordance with AECOM in House Procedures

Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.66mCore Number :01Survey Ch. 5mCored / Logged By :TB / RBBCored / Logged :13-02-17 / 22-02-17Date Cored / Logged :13-02-17 / 22-02-17OSGR: SP 29510, 98451Nominal Diameter :150mmNotes: Cored adjacent to area of Crazing and Depression

In Accordance with AECOM in House Procedures

 Job Number :
 60523093

 Sample Number :
 CR 01096

 Core Number :
 02

 Cored / Logged By :
 TB / RBB

 Date Cored / Logged :
 13-02-17 / 22-02-17

Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65m Survey Ch. 15m

> OSGR: SP 29502, 98456 Notes: N/A

	Depth	(mm)	T 1 · 1		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	47	47	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	47	140	93	Asphalt Concrete (broken @ base and top)	No	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	140	255	115	Concrete - Type D Voids (broken up)	No	n/a	Cement	32	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	255	350	95	Concrete - Type B Voids (broken @ base)	No	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray) ²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.

Aggregate Size ⁴

The sizes indicated are given as the best estimate of the nominal size of the material.

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 02 Cored / Logged By : TB / RBB Date Cored / Logged : 13-02-17 / 22-02-17 Nominal Diameter : 150mm Scheme : Task 1-111 A5 Warm mix Trials Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65m Survey Ch. 15m

> OSGR: SP 29502, 98456 Notes: N/A

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 03 Cored / Logged By : TB / RBB Date Cored / Logged : 13-02-17 / 22-02-17 Nominal Diameter : 200mm Scheme : Task 1-111 A5 Warm mix Trials Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.67m

Survey Ch. 25m

OSGR: SP 29459, 98461

Notes: N/A

	Depth (mm)							Aggregate	
Layer	From	То	 Thickness (mm) 	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	50	50	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	50	130	80	Asphalt Concrete (broken @ base)	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	130	580	450	Concrete - Type B Voids (broken @ base)	Yes	n/a	Cement	20	Crushed Rock/Grave
				Loose Granular Material					

Notes: The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.

Aggregate Size ⁴

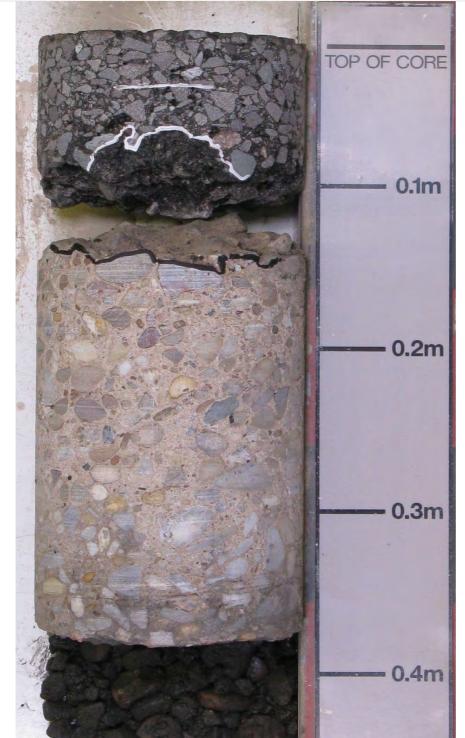
The sizes indicated are given as the best estimate of the nominal size of the material.

In Accordance with AECOM in House Procedures

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 04 Cored / Logged By : TB / RBB Date Cored / Logged : 13-02-17 / 22-02-17

Nominal Diameter : **150mm**


Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65m Survey Ch. 35m

> OSGR: SP 29487, 98464 Notes: N/A

	Depth	(mm)	T 1 · 1		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	35	35	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	35	110	75	Asphalt Concrete (broken @ base)	No	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	110	368	258	Concrete - Type B Voids (broken @ top)	Yes	n/a	Cement	32	Crushed Rock/Grave
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

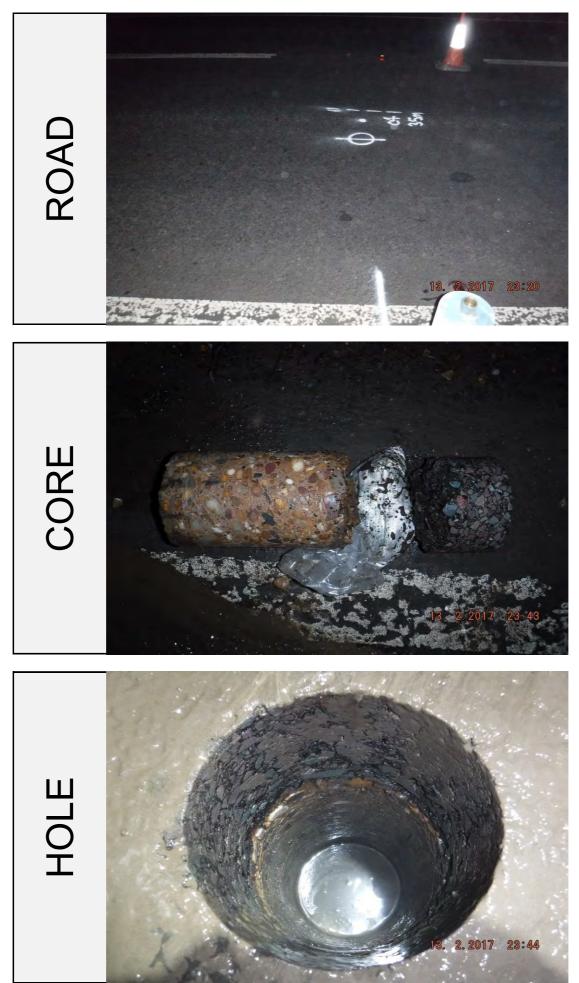
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65mCore Number :04Survey Ch. 35mCored / Logged By :TB / RBBTB / RBBDate Cored / Logged :13-02-17 / 22-02-17OSGR: SP 29487, 98464Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

 Job Number :
 60523093

 Sample Number :
 CR 01096

 Core Number :
 05

 Cored / Logged By :
 TB / RBB

 Date Cored / Logged :
 13-02-17 / 22-02-17

Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.56m Survey Ch. 45m

OSGR: SP 29477, 98468

Notes: N/A

	Depth	(mm)			Suitable for			Agg	regate
₋ayer	From	То	Thickness (mm)	Material Description '	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	35	35	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	35	75	40	Asphalt Concrete	Yes	-ve	Bitumen	20	Crushed Rock
3	75	135	60	Asphalt Concrete (broken @ base)	No	-ve	Bitumen	20	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	135	310	175	Concrete - Type B Voids (broken up)	No	n/a	Cement	20	Crushed Rock/Grave
				Loose Granular Material					
s · The s	colo is for quid	lanco only lt			floot the actual thicknesses of individual lavor	floet the actual thicknesses of individual lavor(s)	floet the actual thicknesses of individual lavor(c)	floet the actual thicknesses of individual lavor(c)	floet the actual thicknesses of individual lavor(s)

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

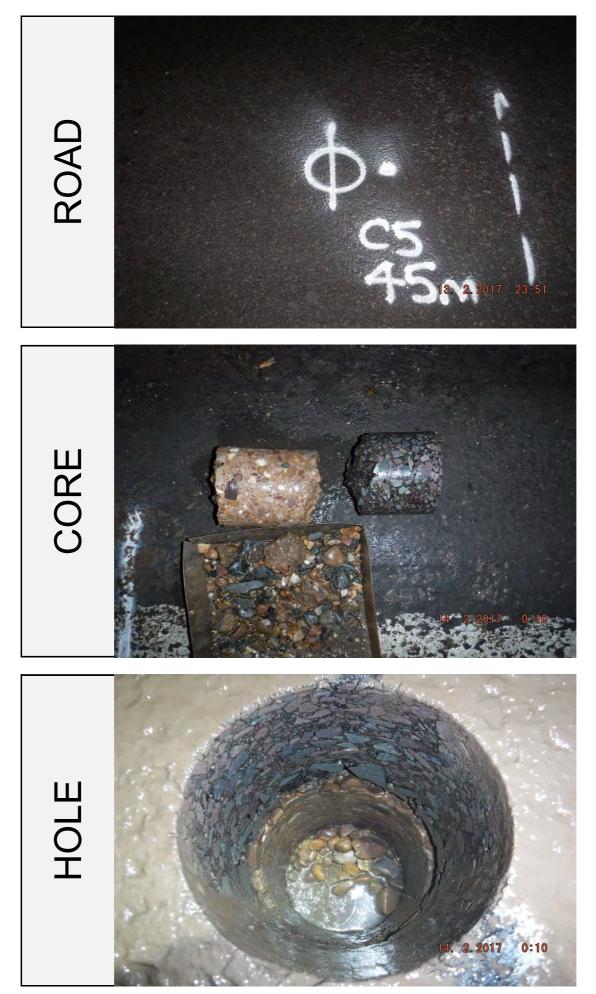
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

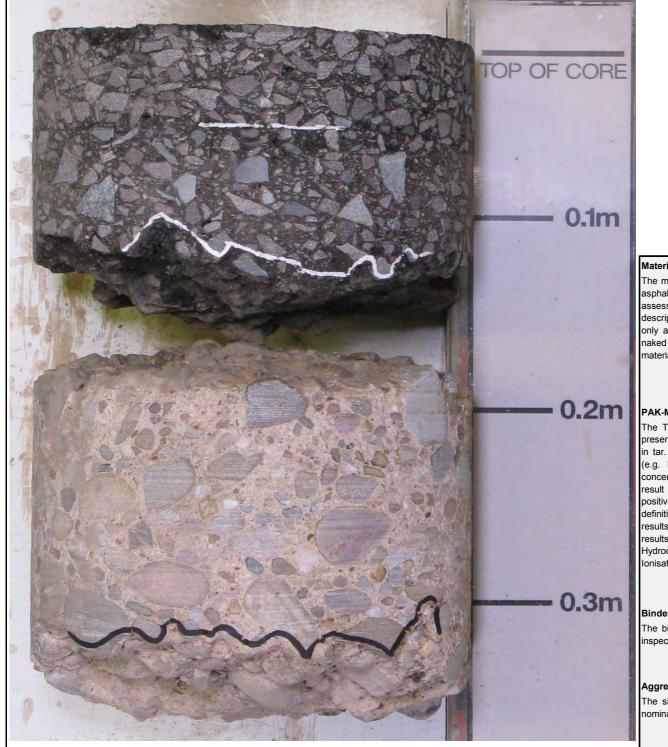
In Accordance with AECOM in House Procedures

Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.56mCore Number :05Survey Ch. 45mCored / Logged By :TB / RBBTBDate Cored / Logged :13-02-17 / 22-02-17OSGR: SP 29477, 98468Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 06 Cored / Logged By : TB / RBB Date Cored / Logged : 14-02-17 / 22-02-17 Nominal Diameter : 200mm

Scheme : Task 1-111 A5 Warm mix Trials


Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.69m Survey Ch. 55m

OSGR: SP 29465, 98473

Notes: N/A

	Depth	ı (mm)	Thistory		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	50	50	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	50	170	120	Asphalt Concrete (broken @ base)	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	170	340	170	Concrete - Type B Voids (broken @ base)	No	n/a	Cement	32	Crushed Rock/Gravel
				Concrete Layer Not Recovered					

Notes: The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

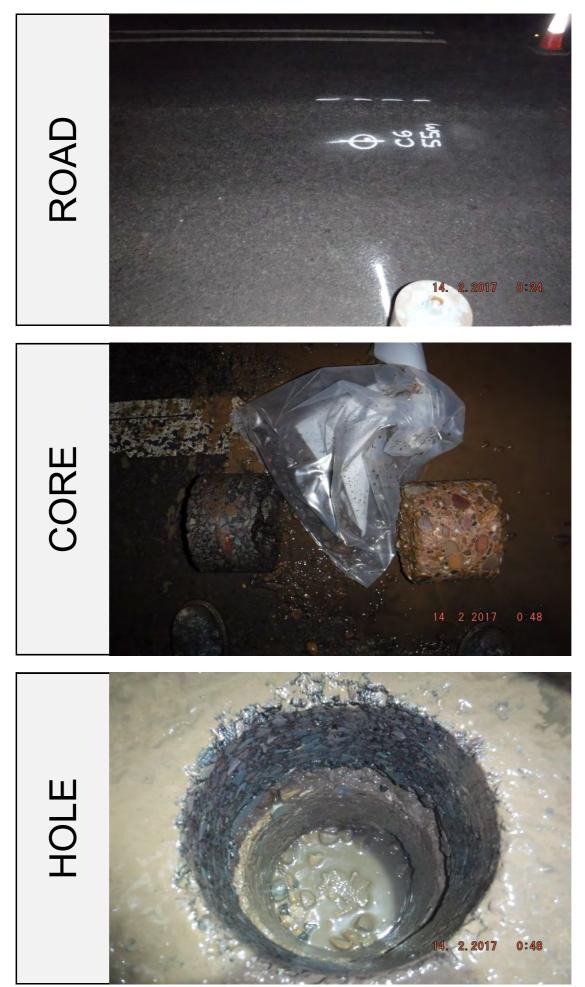
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the esults from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic nspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

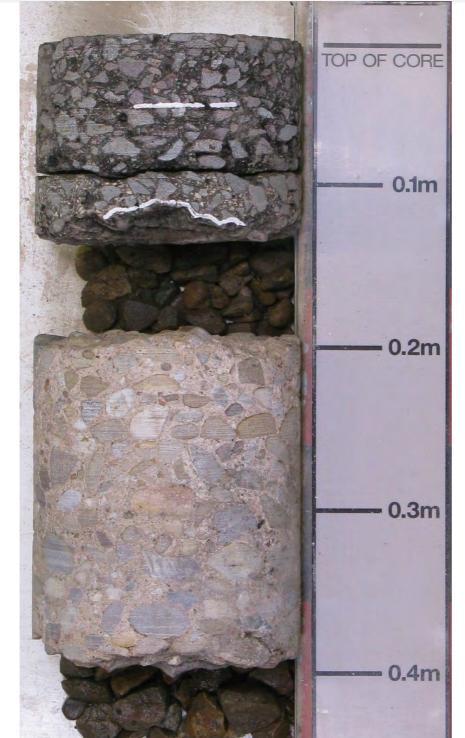
In Accordance with AECOM in House Procedures

Job Number:60523093Scheme:Task 1-111 A5 Warm mix TrialsSample Number:CR 01096Location:Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.69mCore Number:06Survey Ch. 55mCored / Logged By:TB / RBBCose ResearchDate Cored / Logged:14-02-17 / 22-02-17OSGR: SP 29465, 98473Nominal Diameter:200mmNotes: N/A

In Accordance with AECOM in House Procedures

Job Number: 60523093 Sample Number: CR 01096 Core Number: 07 Cored / Logged By: TB / RBB

Date Cored / Logged : 14-02-17 / 22-02-17


Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.63m Survey Ch. 55m

> OSGR: SP 29460, 98478 Notes: N/A

	Depth	n (mm)			Suitable for			Aggi	regate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	45	45	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	45	85	40	Asphalt Concrete (voided)	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	85	120	35	Asphalt Concrete (broken @ base)	No	-ve	Bitumen	20	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	120	180	60	Concrete (disintegrated)	No	n/a	Cement	32	Crushed Rock
				Layers 4 & 5 Not Bonded					
5	180	390	210	Concrete - Type B Voids	Yes	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame lonisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.

Aggregate Size 4

In Accordance with AECOM in House Procedures

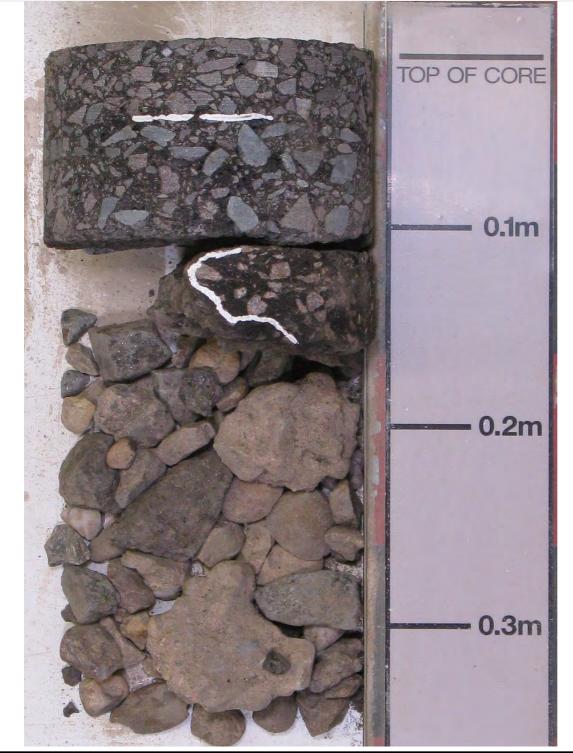
Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.63mCore Number :07Survey Ch. 55mCored / Logged B:TB / RBBOSGR: SP 29460, 98478Date Cored / Logged :14-02-17 / 22-02-17OSGR: SP 29460, 98478Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 08 Cored / Logged By : TB / RBB Date Cored / Logged : 14-02-17 / 22-02-17

Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65m


Survey Ch. 75m

OSGR: SP 29451, 98483

Notes: N/A

	Depth	ı (mm)	T 1 · 1		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	40	40	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	40	100	60	Asphalt Concrete (voided)	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	100	154	54	Hot Rolled Asphalt (broken up)	No	-ve	Bitumen	14	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	154	350	196	Concrete (disintegrated)	No	n/a	Cement	32	Crushed Rock/Grave
				Concrete Layer Not Recovered					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

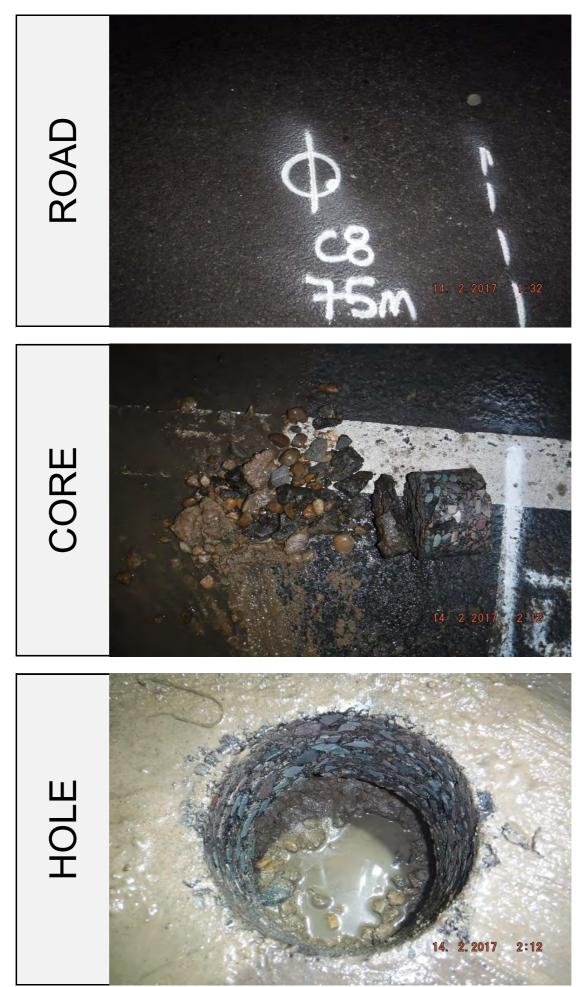
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray) ²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

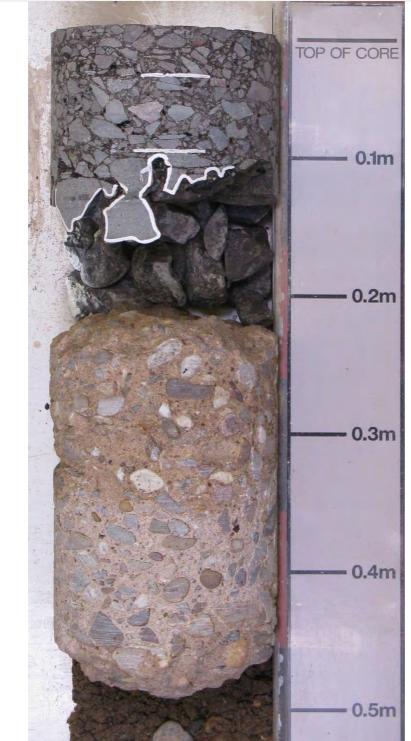
Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65mCore Number :08Survey Ch. 75mCored / Logged By :TB / RBBCore Cored / Logged :14-02-17 / 22-02-17Date Cored / Logged :14-02-17 / 22-02-17OSGR: SP 29451, 98483Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 09 Cored / Logged By : TB / RBB Date Cored / Logged : 14-02-17 / 22-02-17

Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials


Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.63m Survey Ch. 120m

OSGR: SP 29408, 98501

Notes: N/A

	Depth (mm)			Nee N	Suitable for	NATIOS		Agg	regate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	35	35	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	35	90	55	Asphalt Concrete	Yes	-ve	Bitumen	20	Crushed Rock
3	90	205	115	Asphalt Concrete (broken up)	No	+ve	Tar	40	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	205	475	270	Concrete - Type C Voids (damage to face)	No	n/a	Cement	32	Crushed Rock/Grave
				Loose Granular Material					
lotos : Tho	acalo in for quir	danaa anku lt	daga nat nagaa	sarily reflect the actual thicknesses of individual law		<u> </u>			

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

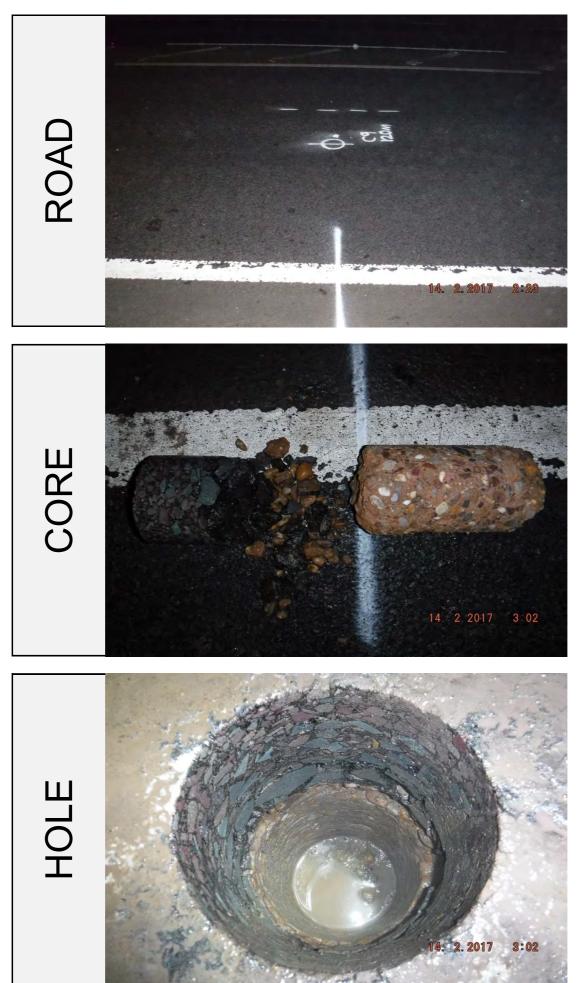
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessmen only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction material (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic nspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

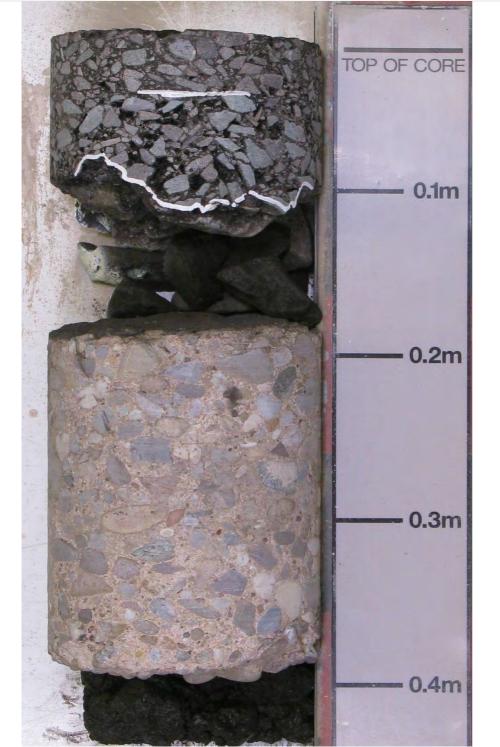
Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.63mCore Number :09Survey Ch. 120mCored / Logged By :TB / RBBCoreDate Cored / Logged :14-02-17 / 22-02-17OSGR: SP 29408, 98501Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 10 Cored / Logged By : TB / RBB

Date Cored / Logged : 14-02-17 / 22-02-17

Nominal Diameter : 150mm


Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65m Survey Ch. 130m

> OSGR: SP 29402, 98503 Notes: N/A

	Depth	ı (mm)			Suitable for NAT/CS			Agg	regate
Layer	From	То	Thickness (mm)	Material Description		PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	40	40	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	40	105	65	Asphalt Concrete (broken @ base and voided)	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	105	175	70	Asphalt Concrete (disintegrated)	No	+ve	Tar	32	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	175	385	210	Concrete - Type B Voids	Yes	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					
					, ,				1

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

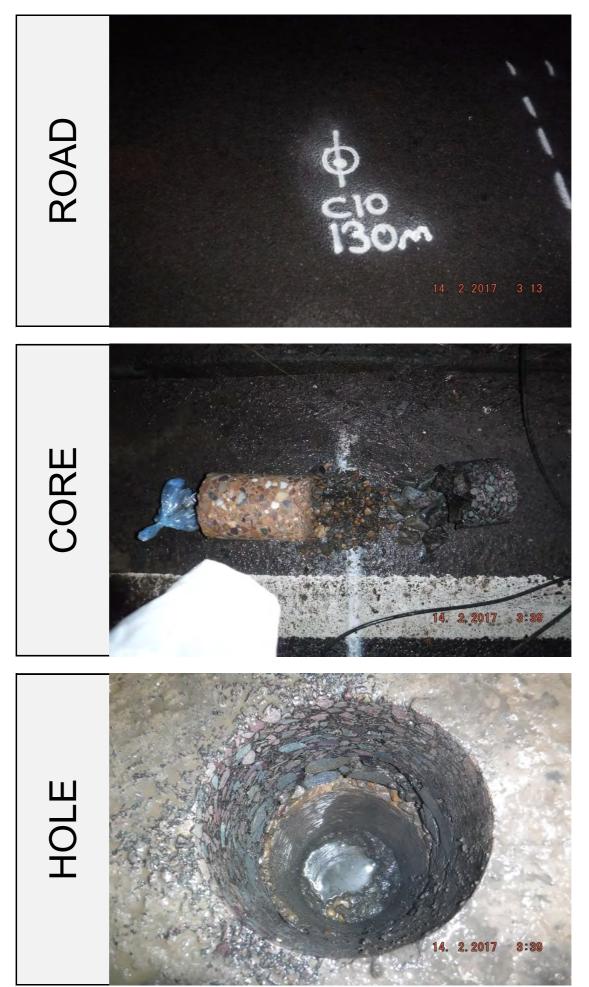
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.65mCore Number :10Survey Ch. 130mCored / Logged By :TB / RBBTBDate Cored / Logged :14-02-17 / 22-02-17OSGR: SP 29402, 98503Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

 Job Number :
 60523093

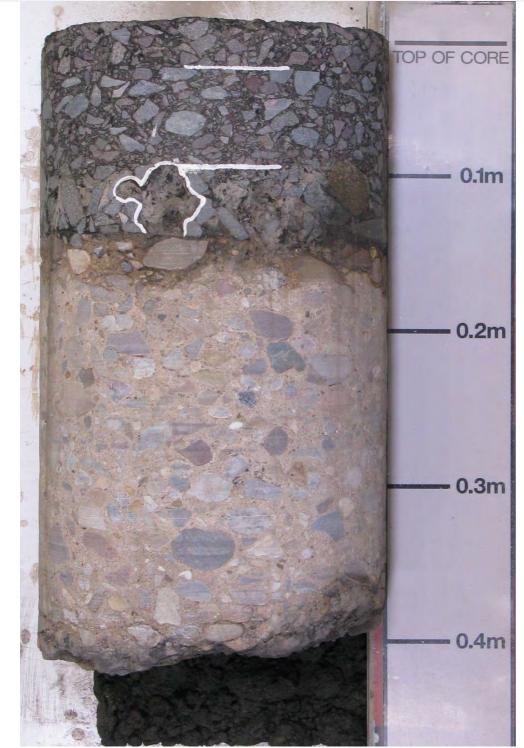
 Sample Number :
 CR 01096

 Core Number :
 11

 Cored / Logged By :
 TB / RBB

 Date Cored / Logged :
 14-02-17 / 22-02-17

Nominal Diameter : 200mm


Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.78m Survey Ch. 140m

> OSGR: SP 29392, 98508 Notes: N/A

	Depth	(mm)	T 1 · 1		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	m) Material Description	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	31	31	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	31	91	60	Asphalt Concrete	Yes	-ve	Bitumen	20	Crushed Rock
3	91	135	44	Asphalt Concrete (damage to face)	No	+ve	Tar	32	Crushed Rock
4	135	395	260	Concrete - Type B Voids	Yes	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

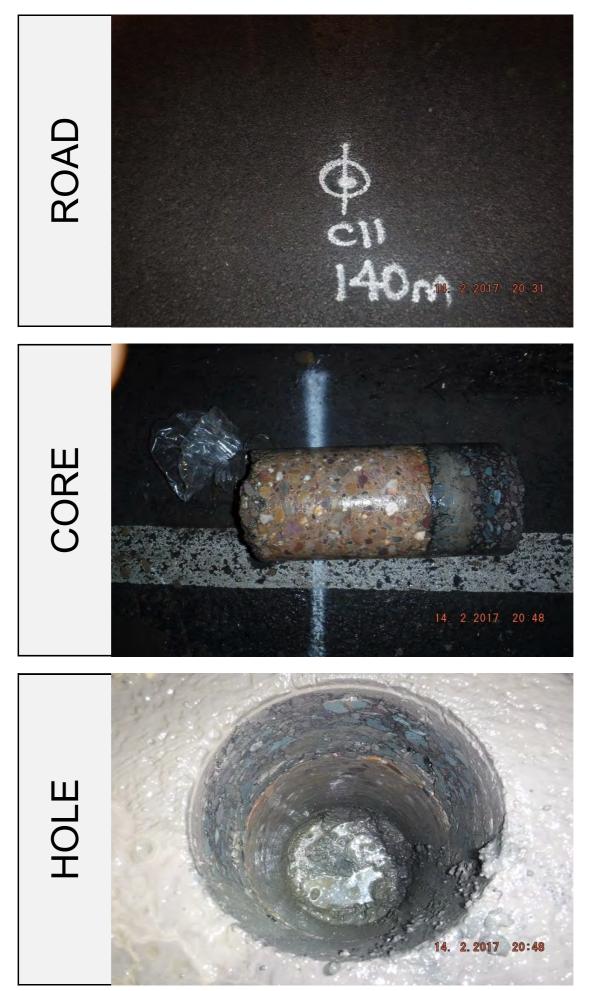
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray) ²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.78mCore Number :11Survey Ch. 140mCored / Logged By :TB / RBBCore Cored / Logged :14-02-17 / 22-02-17Date Cored / Logged :14-02-17 / 22-02-17OSGR: SP 29392, 98508Nominal Diameter :200mmNotes: N/A

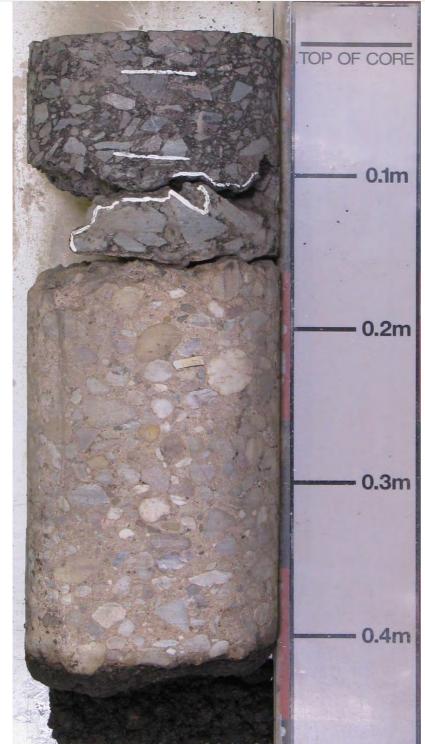
In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 12 Cored / Logged By : TB / RBB

Date Cored / Logged : 14-02-17 / 23-02-17

Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials


Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.68m Survey Ch. 150m

OSGR: SP 29382, 98513

Notes: N/A

	Depth	ı (mm)	Thickness NA	Suitable for			Agg	regate	
Layer	From	То	(mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	30	30	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	30	82	52	Asphalt Concrete	Yes	-ve	Bitumen	20	Crushed Rock
3	82	150	68	Asphalt Concrete (damage to face - delaminated @ 12mm)	No	-ve	Bitumen	32	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	150	410	260	Concrete - Type B Voids	Yes	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

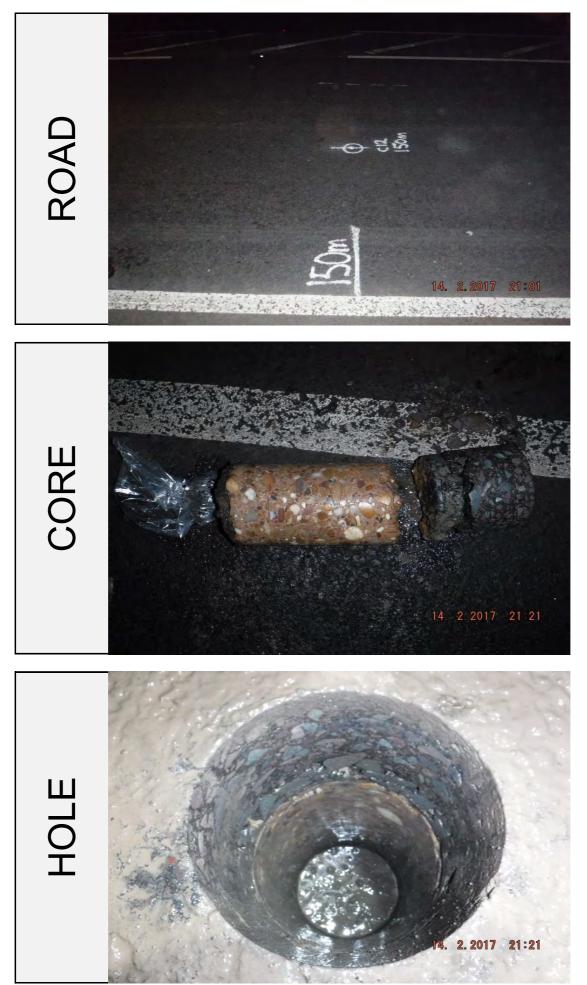
Material Description ¹

The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³


The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.

Aggregate Size ⁴

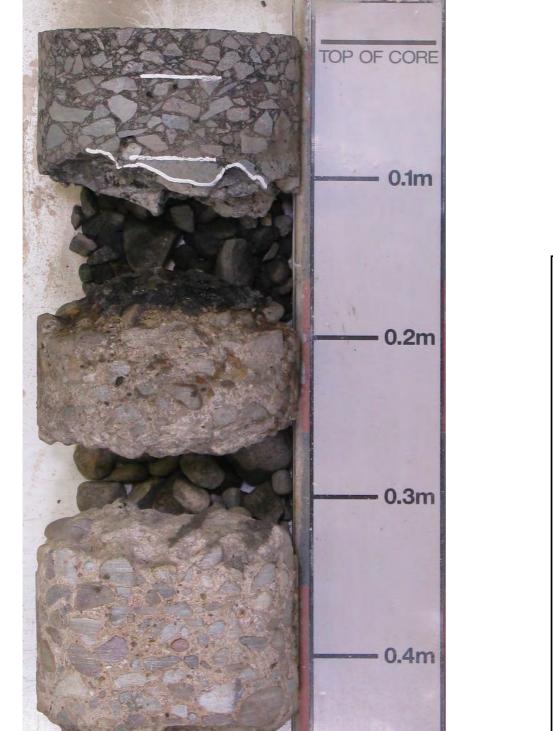
In Accordance with AECOM in House Procedures

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 13 Cored / Logged By : TB / RBB

Date Cored / Logged : 14-02-17 / 23-02-17

Nominal Diameter : 150mm


Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.6m Survey Ch. 160m

> OSGR: SP 29374, 98517 Notes: N/A

	Depth	(mm)	T I · I		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	30	30	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	30	80	50	Asphalt Concrete	Yes	-ve	Bitumen	20	Crushed Rock
3	80	150	70	Asphalt Concrete (broken up)	No	+ve	Tar	32	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	150	435	285	Concrete - Type C Voids (broken up from 260mm - 300mm)	Yes	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					
				arily reflect the actual thicknesses of individual lover(a	, ,				

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

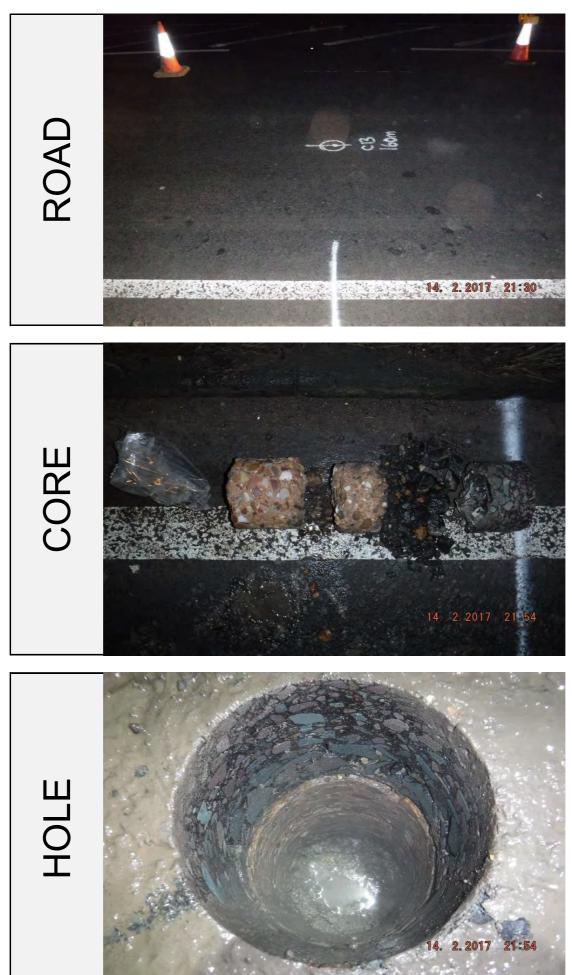
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

Job Number :60523093Scheme :Task 1-111 A5 Warm mix TrialsSample Number :CR 01096Location :Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.6mCore Number :13Survey Ch. 160mCored / Logged By :TB / RBBTBDate Cored / Logged :14-02-17 / 23-02-17OSGR: SP 29374, 98517Nominal Diameter :150mmNotes: N/A

In Accordance with AECOM in House Procedures

 Job Number :
 60523093

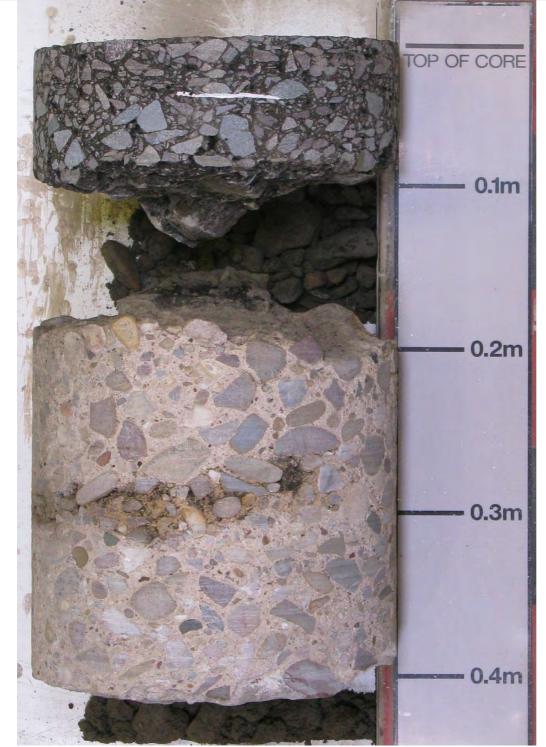
 Sample Number :
 CR 01096

 Core Number :
 14

 Cored / Logged By :
 TB / RBB

 Date Cored / Logged :
 14-02-17 / 23-02-17

Nominal Diameter : 200mm


Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.4m Survey Ch. 170m

> OSGR: SP 29365, 98520 Notes: N/A

	Depth	ı (mm)	T 1 · 1		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	36	36	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	36	80	44	Asphalt Concrete	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	80	170	90	Asphalt Concrete (disintegrated)	No	-ve	Bitumen	32	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	170	390	220	Concrete - Type B Voids (broken @ top)	Yes	n/a	Cement	32	Crushed Rock
				Loose Granular Material					

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

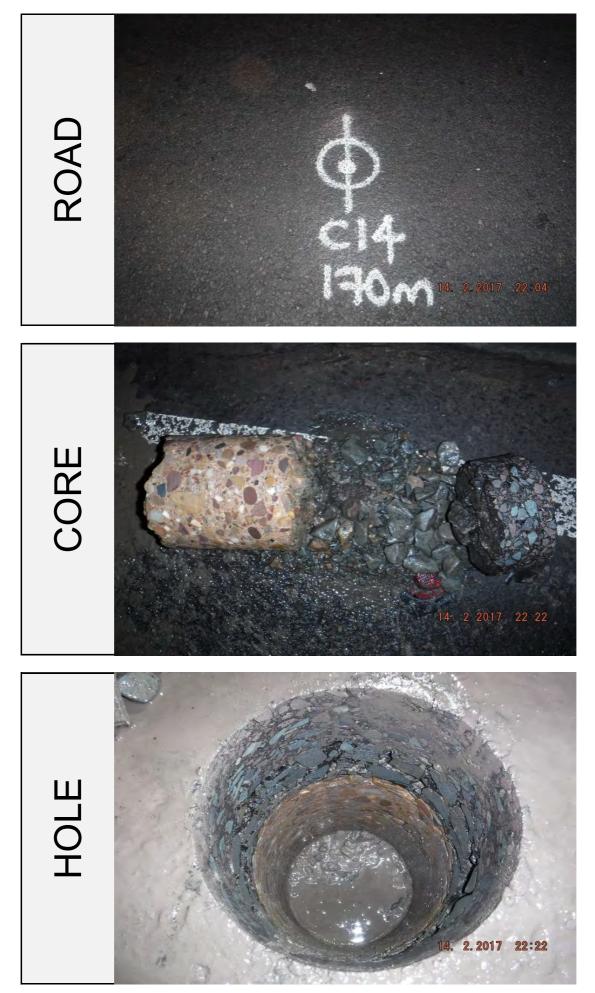
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

Job Number :	60523093	Scheme :	Task 1-111 A5 Warm mix Trials
Sample Number :	CR 01096	Location :	Northbound, Lane 1, Lane Centre, Offset from nearside white line 1.4m
Core Number :	14		Survey Ch. 170m
Cored / Logged By :	TB / RBB		
Date Cored / Logged :	14-02-17 / 23-02-17		OSGR: SP 29365, 98520
Nominal Diameter :	200mm		Notes: N/A

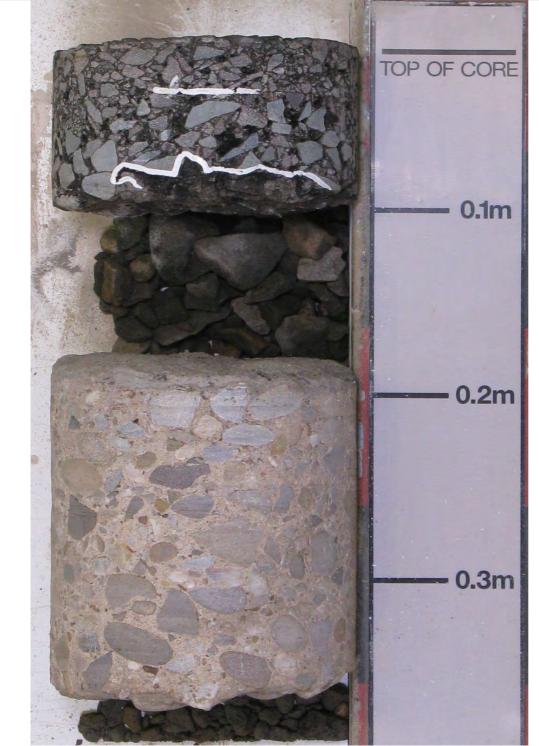
In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 15 Cored / Logged By : TB / RBB

Date Cored / Logged : 14-02-17 / 23-02-17

Nominal Diameter : 150mm

Scheme : Task 1-111 A5 Warm mix Trials Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 1m


Survey Ch. 180m

OSGR: SP 29356, 98523

Notes: N/A

	Depth	(mm)	T 1 · 1		Suitable for			Aggregate	
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре
1	0	31	31	Asphalt Surfacing	Yes	-ve	Bitumen	14	Crushed Rock
2	31	90	59	Asphalt Concrete (broken @ base and voided)	Yes	-ve	Bitumen	20	Crushed Rock
				Layers 2 & 3 Not Bonded					
3	90	175	85	Asphalt Concrete (disintegrated)	No	-ve	Bitumen	32	Crushed Rock
				Layers 3 & 4 Not Bonded					
4	175	355	180	Concrete - Type B Voids	Yes	n/a	Cement	32	Crushed Rock/Gravel
				Loose Granular Material					
						1		1	1

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

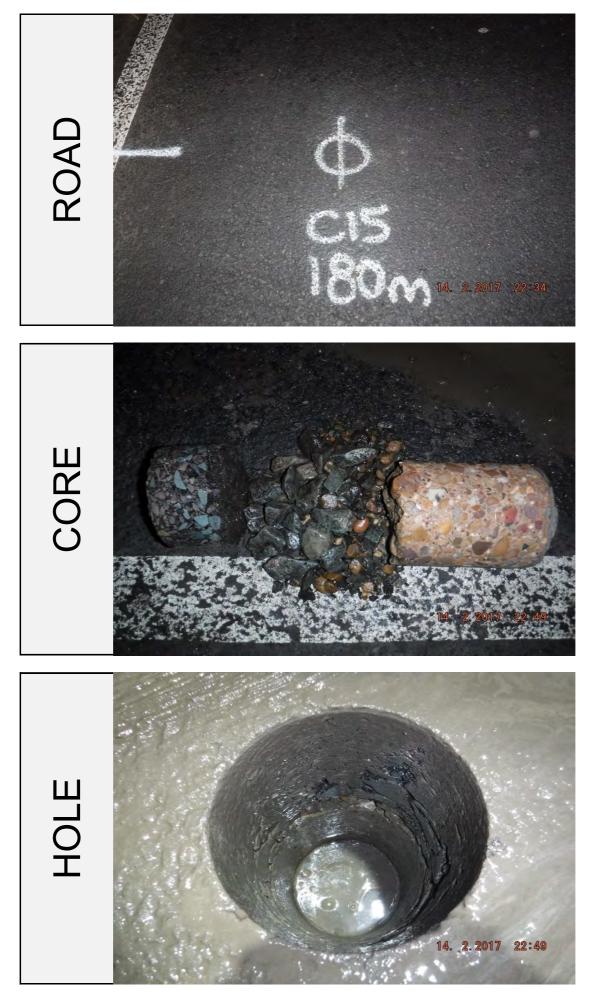
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray)²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

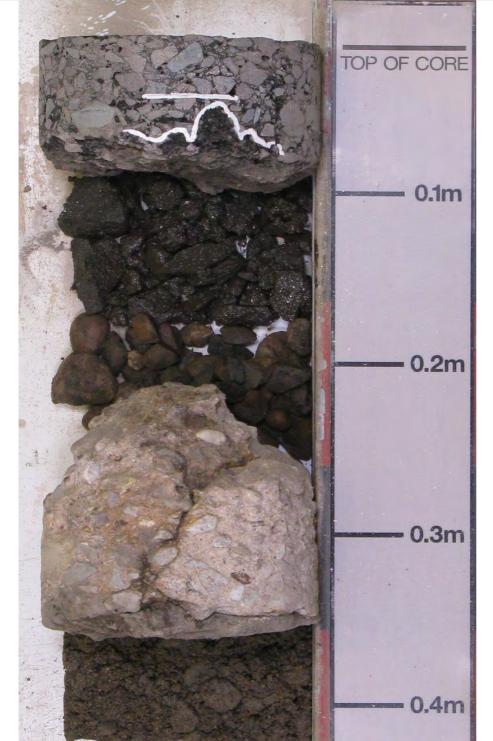
Job Number :	60523093	Scheme :	Task 1-111 A5 Warm mix Trials
Sample Number :	CR 01096	Location :	Northbound, Lane 1, Lane Centre, Offset from nearside white line 1m
Core Number :	15		Survey Ch. 180m
Cored / Logged By :	TB / RBB		
Date Cored / Logged :	14-02-17 / 23-02-17		OSGR: SP 29356, 98523
Nominal Diameter :	150mm		Notes: N/A

In Accordance with AECOM in House Procedures

Job Number : 60523093 Sample Number : CR 01096 Core Number : 16 Cored / Logged By : TB / RBB

Date Cored / Logged : 14-02-17 / 23-02-17

Nominal Diameter : 150mm


Scheme : Task 1-111 A5 Warm mix Trials

Location : Northbound, Lane 1, Lane Centre, Offset from nearside white line 0.91m Survey Ch. 190m

> OSGR: SP 29345, 98527 Notes: N/A

	Depth (m		Depth (mm)		Depth (mm)		Depth (mm)		T 1 · 1		Suitable for			Agg	regate
Layer	From	То	Thickness (mm)	Material Description ¹	NAT/CS Testing (Yes/No)	PAK-Marker ²	Binder ³	Size ⁴	Туре						
1	0	35	35	Asphalt Surfacing (voided)	Yes	-ve	Bitumen	14	Crushed Rock						
2	35	75	40	Asphalt Concrete (broken @ base)	No	-ve	Bitumen	20	Crushed Rock						
				Layers 2 & 3 Not Bonded											
3	75	170	95	Asphalt Concrete (disintegrated)	No	-ve	Bitumen	32	Crushed Rock						
				Layers 3 & 4 Not Bonded											
4	170	340	170	Concrete - Type E Voids (broken up)	No	n/a	Cement	32	Crushed Rock						
				Loose Granular Material											

Notes : The scale is for guidance only. It does not necessarily reflect the actual thicknesses of individual layer(s).

Material Description ¹

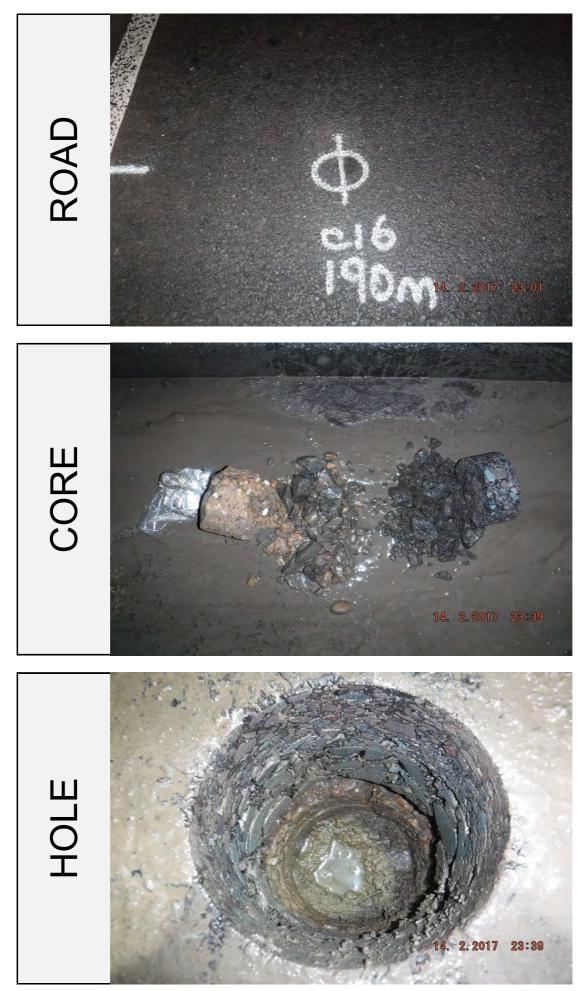
The material description given (such as hot rolled asphalt or asphalt concrete) is generic only and is based upon a visual assessment of the material. Similarly, use of additional descriptive (such as voided) is based on visual assessment only and the relationship between air voids visually to the naked eye and degree of compaction is complex and materials specific.

PAK-Marker (PAH Spray) ²

The Tar Spray Test is a rapid, qualitative indicator of the presence of polyaromatic compounds (PACs) typically found in tar. PACs also exist in other road construction materials (e.g. bitumen and cutbacks like kerosene), but at low concentrations. The probability of obtaining a false positive result in the tar spray test with such materials is low, and a positive result in the tar spray test with such materials is low, and a positive result in the tar spray test is a strong (but not definitive) indicator of the presence of tar. For quantitative results, this test should be considered in conjunction with the results from other tests (i.e. Total Polynuclear Aromatic Hydrocarbons (PAH) by Gas Chromatography - Flame Ionisation Detection (GC-FID)).

Binder ³

The binder type is assessed based on visual and aromatic inspection. The PAK-Marker result is also considered.


Aggregate Size ⁴

In Accordance with AECOM in House Procedures

Job Number : 60523093	Scheme :	Task 1-111 A5 Warm mix Trials
Sample Number : CR 01096	Location :	Northbound, Lane 1, Lane Centre, Offset from nearside white line 0.91m
Core Number : 16		Survey Ch. 190m
Cored / Logged By : TB / RBB		
Date Cored / Logged : 14-02-17 / 23-02-17		OSGR: SP 29345, 98527
Nominal Diameter : 150mm		Notes: N/A

Appendix C – Mixture Volumetrics

BS EN 12697-5 : 2009 - Procedure A & BS EN 12697-8 : 2003

Project Title :	Task 1-111 A5 Warm Mix Trials	Tested By : NAL	
Job Number :	60523093	Reported By : NAL	
Bulk Reference :	CR 01096	Checked By : BA	
Location of Testing :	AECOM Laboratory, NG9 6RZ	Date of Issue : 23 March 2017	
Location of Testing :	AECOM Laboratory, NG9 6RZ	Date of Issue : 23 March 2017	

Sample Reference	Date of Test	Bulk Density Method	Bulk Density (kg/m³)	Maximum Density Test Temperature (°C)	Maximu Density (kg	
01L1	17-Mar-17	В	2410	20.0	2554	5.6
01L2	17-Mar-17	В	2269	20.0	2598	12.7
02L1	17-Mar-17	В	2353	20.0	2554	7.9
04L1	17-Mar-17	В	2438	20.0	2554	4.5
04L2	17-Mar-17	В	2360	20.0	2598	9.1
05L1	17-Mar-17	В	2433	20.0	2554	4.7
05L2	17-Mar-17	В	2344	20.0	2598	9.8
07L1	17-Mar-17	В	2429	20.0	2554	4.9
07L2	17-Mar-17	В	2271	20.0	2598	12.6
08L1	17-Mar-17	В	2355	20.0	2554	7.8
08L2	17-Mar-17	В	2325	20.0	2598	10.5
09L1	17-Mar-17	В	2459	20.0	2555	3.8
09L2	17-Mar-17	В	2477	20.0	2616	5.3
10L1	17-Mar-17	В	2445	20.0	2555	4.3
10L2	17-Mar-17	В	2360	20.0	2616	9.8
12L1	17-Mar-17	В	2418	20.0	2555	5.4
12L2	17-Mar-17	В	2413	20.0	2616	7.8
13L1	17-Mar-17	В	2418	20.0	2555	5.4
13L2	17-Mar-17	В	2446	20.0	2616	6.5
15L1	17-Mar-17	В	2445	20.0	2555	4.3
15L2	17-Mar-17	В	2407	20.0	2616	8.0
16L1	17-Mar-17	В	2406	20.0	2555	5.8
03L2	17-Mar-17	В	2348	20.0	2598	9.6
06L2	17-Mar-17	В	2393	20.0	2598	7.9
11L2	17-Mar-17	В	2417	20.0	2616	7.6
14L2	17-Mar-17	В	2465	20.0	2616	5.8

Comments and Deviations:
m_1 = mass of pyknometer (g), m_2 = m_1 and sample (g), m_3 = m_2 ar

10⁶

 m_1 = mass of pyknometer (g), m_2 = m_1 and sample (g), m_3 = m_2 and filled with water (g), Vp= volume of pyknometer (m³) pw= density of water (mg/m³), pmv= sample maximum density (mg/m³) * x10⁻³ Mg/m³

ρw = 1.00025205 + 7.59t-5.32t²

AECOM

 $\rho mv = \frac{(m_2 - m_1)}{(m_2 - m_1)}$

Origin of Specimen : Extracted from Site

Date: - 23 March 2017

Checked by: -

10⁶xVp - (m₃-m₂)/pw

BS EN 12697-5 : 2009 - Procedure A & BS EN 12697-8 : 2003

Project Title :	Task 1-111 A5 Warm Mix Trials	Tested By : NAL	
Job Number :	60523093	Reported By : NAL	ľ
Bulk Reference :	CR 01096	Checked By : BA	ľ
Location of Testing :	AECOM Laboratory, NG9 6RZ	Date of Issue : 23 March 2017	
Location of Testing :	AECOM Laboratory, NG9 6RZ	Date of Issue : 23 March 2017	_

Sample Reference	Date of Test	Bulk Density Method	Bulk Density (kg/m³)	Maximum Density Test Temperature (°C)		mum (kg/m³)*	Air Voids (% v/v)
01L1	17-Mar-17	С	2339	20.0	25	54	8.4
01L2	17-Mar-17	С	2220	20.0	25	598	14.5
02L1	17-Mar-17	С	2307	20.0	25	554	9.7
04L1	17-Mar-17	С	2392	20.0	25	554	6.3
04L2	17-Mar-17	С	2311	20.0	25	598	11.0
05L1	17-Mar-17	С	2397	20.0	25	554	6.1
05L2	17-Mar-17	С	2330	20.0	25	598	10.3
07L1	17-Mar-17	С	2406	20.0	25	554	5.8
07L2	17-Mar-17	С	2170	20.0	25	598	16.5
08L1	17-Mar-17	С	2356	20.0	25	554	7.8
08L2	17-Mar-17	С	2308	20.0	25	598	11.2
09L1	17-Mar-17	С	2431	20.0	25	555	4.9
09L2	17-Mar-17	С	2469	20.0	26	616	5.6
10L1	17-Mar-17	С	2408	20.0	25	555	5.7
10L2	17-Mar-17	С	2332	20.0	26	516	10.9
12L1	17-Mar-17	С	2376	20.0	25	555	7.0
12L2	17-Mar-17	С	2398	20.0	26	616	8.3
13L1	17-Mar-17	С	2373	20.0	25	555	7.1
13L2	17-Mar-17	С	2422	20.0	26	616	7.4
15L1	17-Mar-17	С	2390	20.0	25	555	6.5
15L2	17-Mar-17	С	2371	20.0	26	516	9.4
16L1	17-Mar-17	С	2366	20.0	25	555	7.4
03L2	17-Mar-17	С	2329	20.0	25	598	10.4
06L2	17-Mar-17	С	2382	20.0	25	598	8.3
11L2	17-Mar-17	С	2406	20.0	26	616	8.0
14L2	17-Mar-17	С	2444	20.0	26	616	6.6

Comments and Deviations:	
$m_1\text{=}$ mass of pyknometer (g), $m_2\text{=}$ m_1 and sample (g), $m_3\text{=}$ m_2 and filled	with water (g), Vp= volume of pyknometer (m^3)
ρw= density of water (mg/m ³), ρmv= sample maximum density (mg/m ³)	* x10 ⁻³ Mg/m ³

ρmv =

 ρ w= density of water (mg/m³), ρ mv= sample maximum density (mg/m³)

7.59t-5.32t² $\rho w = 1.00025205 +$

AECOM

10⁶

 $(m_2 - m_1)$ $10^{6} x V p - (m_3 - m_2) / \rho w$ Origin of Specimen : Extracted from Site

Date: - 23 March 2017

lon Checked by: -

Appendix D – Indirect Tensile Stiffness Modulus Test Results

AECOM

SUMMARY OF INDIRECT TENSILE STIFFNESS MODULUS (ITSM) DATA

BS EN 12697-26 : 2004 (Annex C)

Project Title : Task 1-111 A5 Warm Mix Trials Job Number : 60523093 Bulk Reference : CR 01096			rm Mix Trials	Location of Testing : AECOM Laboratory, N Date of Issue : 01 January 1900 Tested By : SF	1G9 6RZ	Reported By : SF Checked By : NAL
Sample Reference	Thickness (mm)	Diameter (mm)	Bulk Density (kg/m ³)	Horizontal Deformation at 20 °C (microns)	Rise Time at 20 °C (m.sec)	ITSM at 20℃ (MPa)
01L1	25.2 *	151.8	2339	7.5	126	1910
01L2	32.2	151.9	2220	6.9	123	1710
02L1	44.4	151.3	2307	7.0	124	1980
04L1	29.8 *	151.3	2392	7.0	123	3400
05L1	29.9 *	152.0	2397	6.9	122	2490
05L2	36.5	152.3	2330	6.9	125	4350
07L1	42.2	149.2	2406	7.0	123	3230
08L1	36.6	151.5	2356	6.9	124	2830
08L2	31.0	152.1	2308	6.3	124	3580
09L1	31.6	152.2	2431	7.0	126	4200
09L2	50.0	152.3	2469	7.0	124	7830
10L1	30.9	152.1	2408	7.0	123	3550
10L2	33.2	152.2	2332	6.9	123	8210
12L1	32.6	151.4	2376	6.9	124	3730
12L2	42.1	151.4	2398	7.0	125	8300
Test Annulus	70	150	n/a	n/a	n/a	Test Annulus Reference : 0127 Test Annulus Percentage Difference : 0.0%

Comments and Deviations:

Origin of specimen : Extracted from Site

Density Method Used : Procedure C - Sealed

Sample outside of the recommended thickness range.

Checked by: - NA

Created: 15/10/2015 EKD Version: v2 24/02/2017 Printed on 23/03/2017 Date: - 10 March 2017

AECOM

SUMMARY OF INDIRECT TENSILE STIFFNESS MODULUS (ITSM) DATA

BS EN 12697-26 : 2004 (Annex C)

	ject Title : Tas l		rm Mix Trials	Location of Testing : AECOM Labo		Reported By : SF
Job Number : 60523093				Date of Issue : 01 January 1	900	Checked By : NAL
Bulk Re	eference : CR	01096		Tested By : SF		
Sample Reference	Thickness (mm)	Diameter (mm)	Bulk Density (kg/m³)	Horizontal Deformation at 20 °C (microns)	Rise Time at 20℃ (m.sec)	ITSM at 20℃ (MPa)
13L1	37.8	151.7	2373	7.0	125	3430
13L2	36.7	151.8	2422	7.1	122	7500
15L2	32.4	151.8	2371	7.0	125	9510
16L1	34.6	151.8	2366	6.9	123	2840
Test Annulus	70	150	n/a	n/a	n/a	Test Annulus Reference : 0127 Test Annulus Percentage Difference : 0.0%

Comments and Deviations:

Origin of specimen : Extracted from Site

Density Method Used : Procedure C - Sealed

Sample outside of the recommended thickness range.

Checked by: - NA

Created: 15/10/2015 EKD Version: v2 24/02/2017 Printed on 23/03/2017 Date: - 10 March 2017

Appendix E – Wheel Tracking Tests

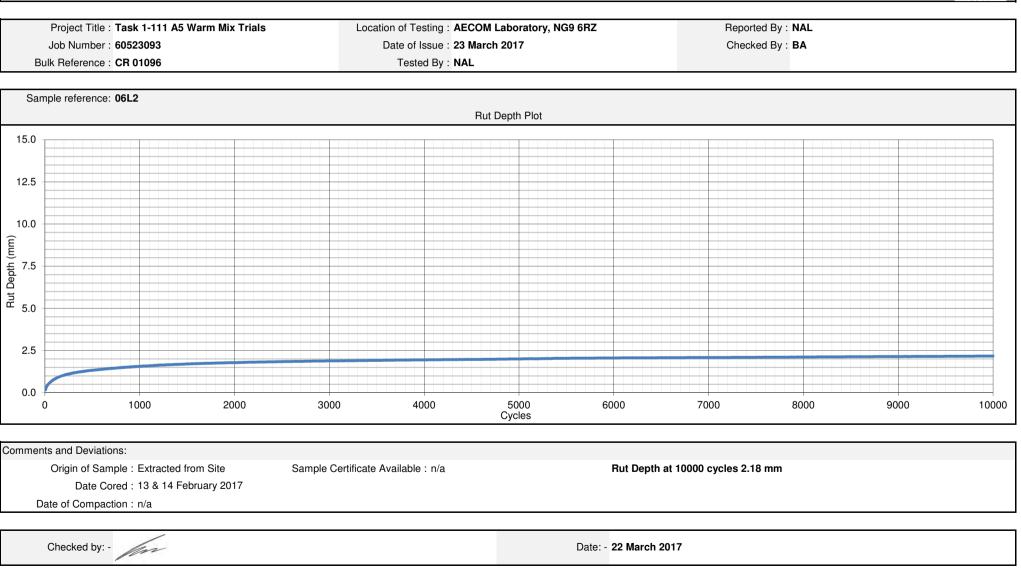
BS EN 12697-22:2003+A1:2007 - Procedure B in Air

Project Title : Ta	sk 1-111 A5 Warm Mi	ix Trials	Te	ested By : NAL					
Job Number : 60	523093		Rep	Reported By : NAL Checked By : BA					
Bulk Reference : CF	R 01096		Che						
Location of Testing : A	ECOM Laboratory, NG	9 6RZ	Date	of Issue : 23 March	n 2017				
Sample Number	Thickness (mm)	Bulk density (kg/m ³)	Test Temperature (℃)	Wheel-Tracking Slope in Air (mm/10 ³ cycles)	Proportional Rut Depth at 10000 Cycles (%)	Rut Depth at 10000 Cycles (mm)			
03L2	38	2329	60	3.0E-02	5.9	2.3			
06L2	38	2382	60	3.5E-02	5.7	2.2			
	Mean Wheel-T	racking Slope in	Air (mm/10 ³ cycles)	1.6E-02					
		Mean Pro	portion Rut Depth a						
			N	-	10000 Cycles (mm)	1.1			
11L2	56	2406	60	6.2E-02	4.5	2.5			
14L2	26	2444	60	1.8E-02	3.8	1.0			
	Mean Wheel-T		Air (mm/10 ³ cycles)		4.1				
		Mean Pro	portion Rut Depth a		4. I 10000 Cycles (mm)	1.7			
			N I	lean Rut Depth at	Toooo Cycles (mm)	1.7			
	Mean Wheel-T	racking Slope in	Air (mm/10 ³ cycles)		11				
		Mean Pro	portion Rut Depth a	t 10000 Cycles (%)					
			Ν	lean Rut Depth at	10000 Cycles (mm)				
	_								
	Mean Wheel-T	racking Slope in	Air (mm/10 ³ cycles)						
	Mean Wheel-T		Air (mm/10 ³ cycles)						

Date: - 22 March 2017

fm Checked by: -

AECOM



Project	Title : Task 1-111 A5	Warm Mix Trials	Loc	ation of Testing : AE	COM Laboratory, NG	i9 6RZ	Report	ed By : NAL		4410
Job Nun	Job Number : 60523093			Date of Issue : 23	March 2017			ed By : BA		
Bulk Refere	ence : CR 01096			Tested By : NA	<u>،۲</u>					
Sample refer	ence: 03L2									
					Rut Depth Plot					
15.0										
12.5										
10.0										
(m										
도 닻 7.5										
DeD										
Geoty (mm) 7.5 5.0										
2.5										
0.0										
0	1000	2000	3000	4000	5000 Cycles	6000	7000	8000	9000	10000
Comments and De										
	f Sample : Extracted f ate Cored : 13 & 14 Fe		Sample Certificate	• Available : n/a		Rut Depth	at 10000 cycles 2.2	5 mm		
	mpaction : n/a	Bruary 2017								
Bale of Ool										
Chaskas	hu:					Date: - 22 March 2	0017			
Checked	d by: -					Date 22 Warch 2	2017			

	Project Title :	Task 1-111 A5	Warm Mix Trials	Locat	tion of Testing : AEC	COM Laboratory, NG	9 6RZ	Reporte	ed By : NAL		
	Job Number : 60523093			Date of Issue : 23 March 2017			Checked By : BA				
Bu	lk Reference :	CR 01096			Tested By : NAL	-					
Sam	ple reference:	: 11L2									
						Rut Depth Plot					
15.0 ⊤											
-											
12.5											
-											
10.0											
Ê											
E - 75											
Septl											
But Depth (mm) 2.5 2.0											
£ 5.0											
-											
2.5											
-											
0.0											
0.0 1		1000	2000	3000	4000	5000 Cycles	6000	7000	8000	9000	10000
Comment	s and Deviatio	ons:									
	-	nple:Extracted f ored:13 & 14 Fe		Sample Certificate	Available : n/a		Rut Depth	at 10000 cycles 2.51	mm		
Da	ite of Compac		, -								
							_]
	Checked by: -	for					Date: - 22 March 2	2017			

	oject Title : Task 1-111 A5	Warm Mix Trials	Loca	tion of Testing : AE	-	, NG9 6RZ			ed By : NAL		
	b Number : 60523093 Reference : CR 01096			Date of Issue : 23				Check	ed By : BA		
Buik F	Reference : CR 01096			Tested By : NA							
Sample	reference: 1412										
					Rut Depth Plot						
15.0											
12.5											
10.0											
c											
Ē											
Rut Depth (mm) 2.5 5.0											
£ 5.0											
2.5											
0.0											
0	1000	2000	3000	4000	5000 Cycles	6	000	7000	8000	9000	10000
					-						
Comments a	nd Deviations:										
Or	rigin of Sample : Extracted f		Sample Certificate	Available : n/a			Rut Depth a	at 10000 cycles 0.9	3 mm		
_	Date Cored : 13 & 14 Fe	ebruary 2017									
Date	of Compaction : n/a										
Ch	ecked by: -					Date: -	22 March 2	017			
Created: 20	14 EKD										0175 - FORM

Appendix F – Binder Analysis

DETERMINATION OF NEEDLE PENETRATION AND SOFTENING POINT (RING AND BALL METHOD) OF BITUMINOUS BINDERS

BS EN 1426:2007 (BS 2000-49:2007) & BS EN 1427:2007 (BS 2000-58:2007)

Project Title : Task 1-111 A5 Warm Mix Trials	Location of Testing : AECOM Laboratory, NG9 6RZ	Reported By : BA	
Job Number : 60523093	Date of Issue : 23 March 2017	Checked By : NAL	
Bulk Reference : CR 01096	Tested By : BA		

Comula reference		Penetration	BS EN 1426:2007 (BS 20	00-49:2007)		Softening Po	int BS EN 1427:2007 (BS	2000-58:2007)
Sample reference	Test Date	Temperature (°C)	Mass of Weight (g)	Release Time (s)	Penetration (1/10mm)	Test Date	Bath Liquid	Softening Point (°C)
C1,2,4 L1	20-Mar-17	25	100.0	5.0	87	20-Mar-17	Distilled Water	49.0
C9,10,12 L1	20-Mar-17	25	100.0	5.0	82	20-Mar-17	Distilled Water	50.4
C1,4,5 L2	20-Mar-17	25	100.0	5.0	42	21-Jul-17	Distilled Water	63.8
C9,10,12 L2	20-Mar-17	25	100.0	5.0	50	21-Jul-17	Distilled Water	55.2

Comments and Deviations:

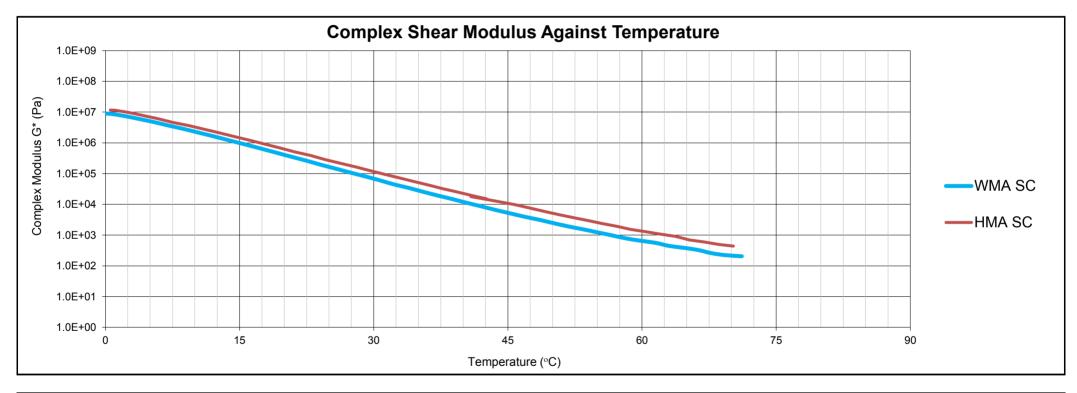
Origin of specimen : Extracted from Site

Calculations: The mean of three valid determinations used to achieve the penetration value (expressed in tenths of a millimetre rounded to the nearest integer).

The mean of two recorded values for softening point used to achieve softening point value (values below or equal to 80°C rounded to the nearest 0.2°C, values above 80°C rounded to the nearest 0.5°C)

Checked by: - NA

Date: - 22 March 2017


AECOM DETERMINATION OF COMPLEX SHEAR MODULUS AND PHASE ANGLE - DYNAMIC SHEAR RHEOMETER (DSR)

0078 SOP, BS EN 14770 : 2012

(1)

UKAS TESTING 4410

Project Title :	Task 1-111 A5 Warm Mix Trials	Client Sample ID :	C1,2,4 L1	Tested B	3y : BA
Job Number :	60523093	Location of Testing :	Nottingham	Reported I	By : BA
Bulk Reference :	CR 01096	Date of Issue :	23 March 2017	Checked I	By : EKD

Comments and Deviations:

Origin of samples :Extracted from Site

Testing carried out using 8 mm Spindle, 1mm gap, 1% Strain, Equilibration Time of 600s.

Checked by: - Eric Draper

Date: - 23 March 2017

AECOM DETERMINATION OF COMPLEX SHEAR MODULUS AND PHASE ANGLE - DYNAMIC SHEAR RHEOMETER (DSR)

0078 SOP, BS EN 14770 : 2012

GL)

UKAS TESTING 4410

Project Title :	Task 1-111 A5 Warm Mix Trials	Client Sample ID :	WMA and HMA	Tested By :	ВА
Job Number :	60523093	Location of Testing :	Nottingham	Reported By :	ВА
Bulk Reference :	CR 01096	Date of Issue :	23 March 2017	Checked By :	EKD

Comments and Deviations:

Origin of samples :Extracted from Site

Testing carried out using 8 mm Spindle, 1mm gap, 1% Strain, Equilibration Time of 600s.

Checked by: - Eric Draper

Date: - 23 March 2017

Numbered copies

Number:	<document copy=""></document>	Copies to:	<copy 1="" recipient=""></copy>
			<copy 2="" recipient=""></copy>
			<copy 3="" recipient=""></copy>

aecom.com