
Horizontal Directional Drilling & Trenchless Construction Capabilities

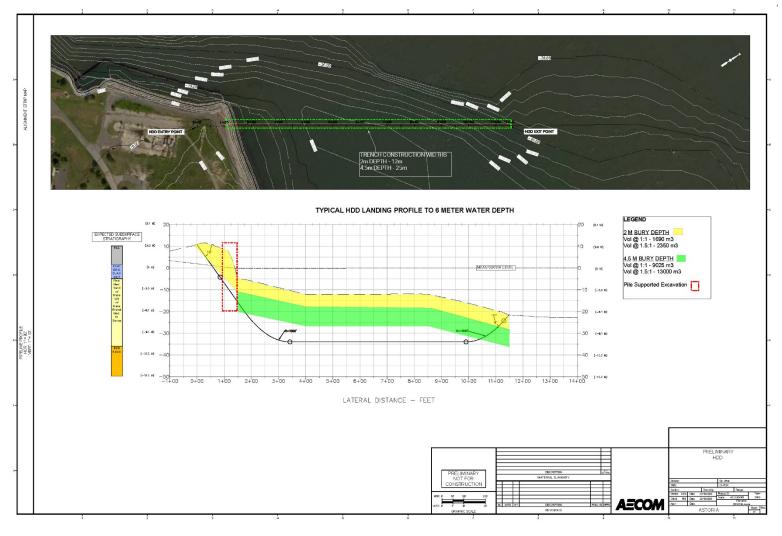
CONVEYANCE PLANNING, DESIGN, AND CONSTRUCTION PHASE SERVICES

OIL & GAS TRANSMISSION | OFFSHORE WIND | POWER TRANSMISSION | TELECOM

SCOPE OF TRENCHLESS PLANNING, DESIGN AND CONSTRUCTION PHASE SERVICES:

- HDD Shore Approach and Conventional
- Microtunneling, Conventional Boring
- Conduit Installation and Operational Stress Analyses
- Borehole Stability Analysis and Other Specialty Analyses
- Construction Risk Profile and Mitigation Options
- Routing Studies
- Permitting Support and Documentation FERC, State, and Local
- Site Access, Temporary/Permanent Easement and Staging Options
- Construction Inspection, Monitoring, As-Built Documentation

EXPERIENCE HIGHLIGHTS


- Over 2,500 Trenchless Designs Completed To Date
- Offshore Power Landfalls, Water Body Crossings, Wetlands, Roadways, Railroads, Utilities, Airport Runways and Similar Natural and Man-made Obstacles; Each With Unique Spatial and Geotechnical Characteristics.
- Longest HDD 7,100' | Conduit Diameters 4" 60" | Compound Curves | Shore Approaches and Outfalls | Intersect Method

COORDINATION WITH CONTRACTORS AND SUBCONTRACTORS

- AECOM has worked with all NATIONAL HDD/Trenchless Contractors and many Regional and Local Drillers
- Typical Subcontracted Services Surveying, Bathymetry, Geophysics
- Geotechnical Drilling Services In-house and Locally Subcontracted

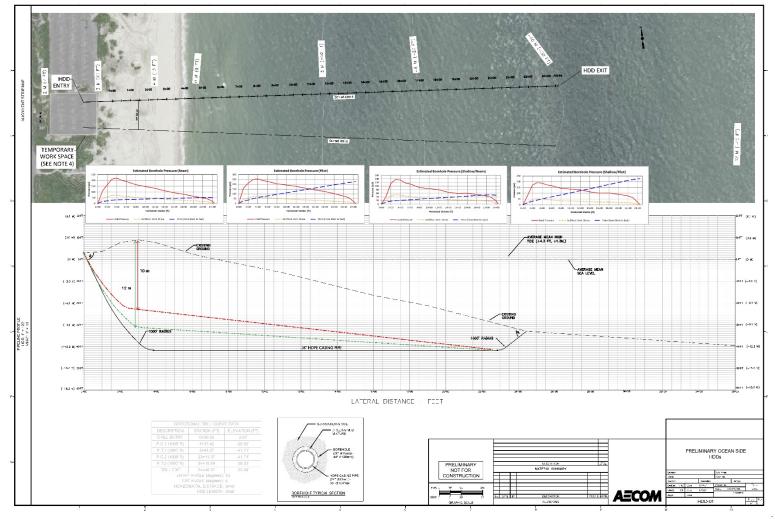
Project Example – Shore Landings (Confidential Offshore Wind Client)

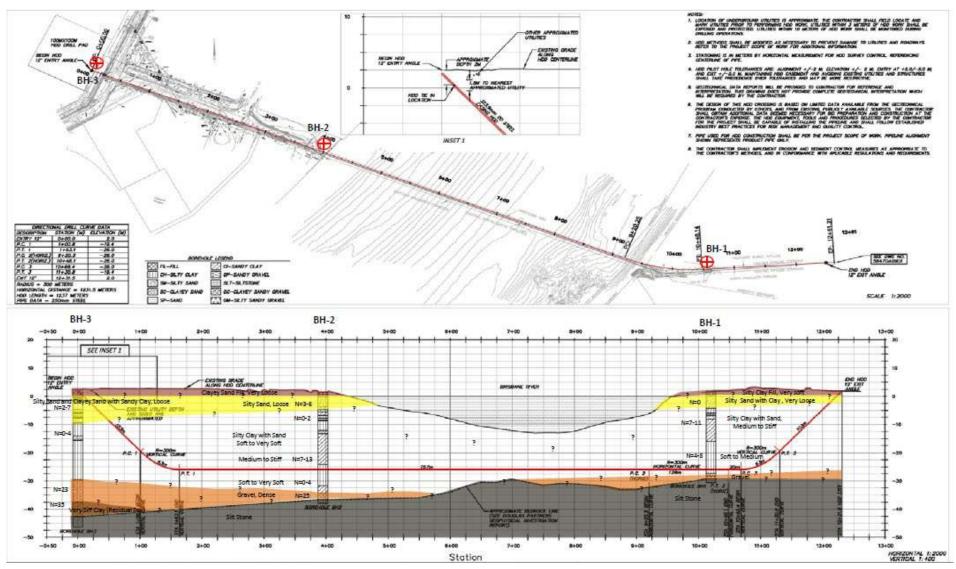
HDD and Trenching Landing Options for HVDC Marine Cable/Fiber Optic

Project Example - Dominion Virginia Gas 230kV, 600 MW

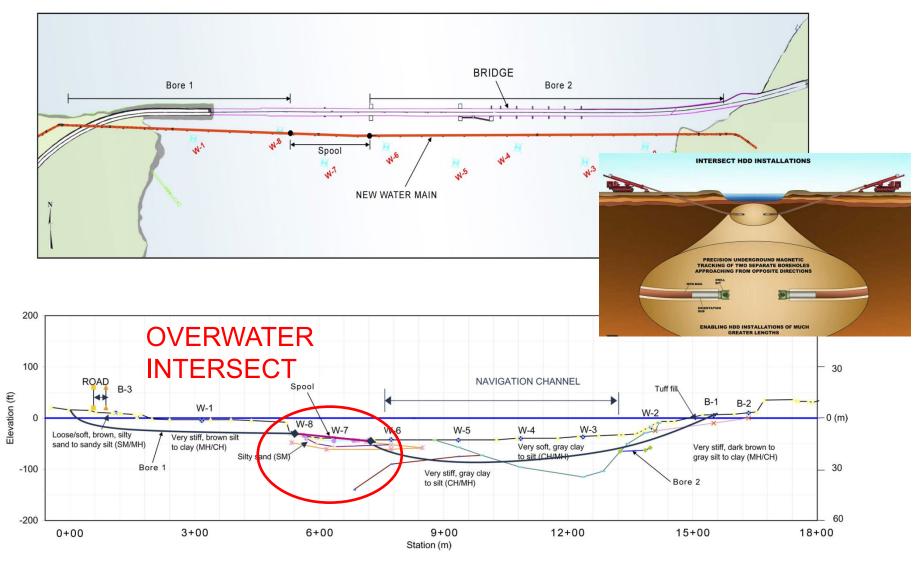
U/G Transmission Lines

- Full-Time Construction Monitoring Services (MEARS)
- Total of 17,000 FT HDD across York River – 3 Segments

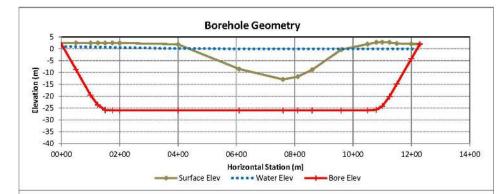


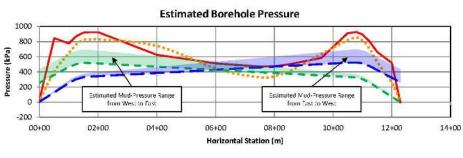

- North Section = 6000 FT
- Central = 7500 FT
- South Section = 3500 FT
- Twin 8-inch lines
- Fixed Platforms in River

Project Example – Shore Landings (Confidential Offshore Wind Client)

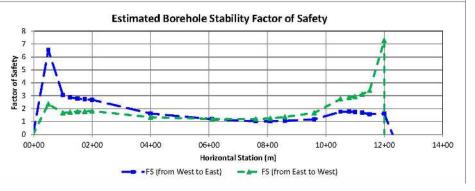

Conceptual HDD Designs for Marine Cable Landings

Project Example - Brisbane River & Runway Crossing Crossing Crossing


Project Example - Pearl Harbor P534 Crossing



Project Example - Brisbane River & Runway Crossing Crossing Crossing


- In House Programs for Pipe Stress Analysis, Borehole Stability, and Inadvertent Mud Returns
- Full Risk/Mitigation Profile in FS

	URS	Virginia Bea					River - HDI March 10		
Pipe Material Properties					Installation Properties				
Pir	e Outside Dia	COLUMN TO A	10.00	in	Coef	fecient of Frid		0.30	
Minimum Wall Thickness (t):			0.365			Drag Coeffici		0.06	nei
Modulous of Elasticity (E):					Drilling Mud Density (Ymut)		89.80		
			and the second second second		-				
Spec. Min. Yield Strength (SMYS):			and a second		Water Density (γ_{wa}):		62.40		
Bending Moment of Inertia (I):						Ballast We	· · ···	29.25	
Poisson's Ratio (v):			0.30	steel	Displa	aced Mud We	eight (W _m):	48.98	lb/ft
Dia. to Wall Thickness Ratio (D/t):			27.40		Effective Wgt Ballasted (We):		17.83	lb/ft	
Coeffecient of Thermal Expansion:			6.5E+06 in/in/F		Effective Wgt Submerged (W _e):		-11.42	lb/ft	
Empty Pipe Weight:			37.56 lb/ft		Above Ground Load (W.):		30,484	lb	
Pipe Interior Volume:			0.47	100.00		Allowable P	1 P.	1.86E+06	
Pipe Exterior Volume:			0.55				Area (A):	11.05	
The Exterior Volume.			0.00 10/16		Hydrokinetic Pressure (p):		10.00		
						lydrokinetic Fi		1178.10	
				Drille	d Path Input		1 110	1.17.457.6	
	Sta	Drill Entry:	000+00		a r aut tripat	Drill Er	ntry Angle:	12	0
Elev. Drill Entry:			6.56 -85.22		Entry Tangent:		338		
Elev. Bottom					Radius Entry Curve:		984		
Sta, Drill Exit			040+40		Bottom Tangent:		2,970 ft		
Elev. Drill Exit			6.56		Radius Exit Curve:		984 ft		
Elev. Obstacle:			-45.54		Exit Tangent:		338 ft		
Clearance Check:			OK >5'		Drill Exit Angle:		12 °		
Horizontal Curve?:			YES		Horizontal Curve Radius:		984 ft		
					Horizontal Curve Entry Angle:		15 °		
					Sector Sector Sector	zontal Curve I	Exit Angle:	15	0
					Path Geometry	V			
Entry		VPC1	VPT1	HPC1	HPT1	VPC2	VPT2	Exit	
		6.56	-63.71	-85.22	-85.22	-85.22	-85.22	-63.71	6.5
T-4	Station al Drill Length	0000+00	0003+31	0005+35 544.09	0030+16	0033+73 3373.39	0035+05	0037+10 3720.18	0040+
1 OL	ai Dhii Length	0.00	338.00		Forces (SI Uni		3514.09	5720.18	4056.
	1	-					- 1		-
	Above	-	er er er	Axial	Bending				Total
	Ground	Frictional	Fluidic	Segment	Frictional	Assumed	Average	Section Pull	Pullbac
Point 1	Load 135.601	Drag 5.038	Drag 34.009	Weight 3.570	Drag	Tension 0	0 O	Back 178.218	(Newtor 183,459
Point 2	135,601	5,036	20.736	1.094	19.950	200,170	204,349	41.780	225,23
Point 3	1	2.097	14,156	1,054	15,550	200,170	0	16,253	241.49
Point 4	1	2,007	35,952	4,698	11,567	262,445	267,601	52,216	293.70
Point 5	i	37.669	248.723	4,000	1,007	0	0	286.392	580.10
Point 6	i	1	20.736	-1,094	47,553	609,406	613,698	67.195	647,29
Point 7	i	5.038	34.008	-3,570	1	0	0	35,477	682.773

-Limit Pressure 💀 🚥 3x Effect. Vert. Stress 👝 Pmin (from West to East) 🚽 Pmin (from East to West)

CONTACT INFORMATION:

Robert Marszalkowski, PE | Norfolk, VA Direct: +1.757.306.6771 Mobile:+1.703.625.5568 robert.marszalkowski@aecom.com

CONVEYANCE PLANNING, DESIGN, AND CONSTRUCTION PHASE SERVICES

OIL & GAS TRANSMISSION | OFFSHORE WIND| POWER TRANSMISSION | TELECOM