As an essential part of the Nantong Municipal Government’s plan to promote the local central innovation zone, the planning and design of Nantong Zilang Central Forest Park (Zilang Park) started at the end of 2016.

Located at the center of the zone, the park covers an area of 266 hectares, including 150 hectares of ecological habitat area and 116 hectares of water area with flood control and storage capacity. A 14-kilometer ecological greenway and a 20-kilometer biological corridor are planned on the site, which not only connects people with nature, but also improves biodiversity and stormwater management.

Moreover, the project brings great social benefits to the local area, including a rise in oxygen levels in the atmosphere, a drop in noise pollution and a reduction in urban heat island effect. The improved ecological infrastructure has also created new opportunities for social development. From 2019 to 2020, the central innovation zone achieved a substantial increase in the total number of tourists. The investment from high-tech companies increased 2.4 times on a year-on-year basis, effectively boosting local employment in Nantong.

Nantong’s geological location and natural environment initially brought challenges to the park’s design. The city is located in the Yangtze River Plain and suffers regular flooding due to its copious watercourses. It becomes worse at the onset of typhoons. Radical urbanization and contamination from the overuse of pesticide also contributed to the heavy destruction of watercourses.

To mitigate these long-standing problems, AECOM used the “Water-sensitive Design” approach. Since most of the existing watercourses were located south of the site, and the water systems on the two sides were segregated, rainwater could not be stored.

Based on this framework, a hydraulic model was designed to evaluate the water’s self-cleaning capacity. It shows that the theoretic self-cleaning period is within seven days but is estimated to take up to 15 days considering the Yangtze River current and the water quality of the inner course.

Our design team proposed a framework for an integrated and resilient waterbody, which connects consecutive channels and two artificial wetlands. The wetlands serve as eco-sponge filters to purify the water before entering the south lake. In addition, the team also applied a technology to restore microbe and aquatic creatures in creating a self-cleaning water system in the south lake. This technology activates microbe Plant Growth-Promoting Rhizobacteria (PGPR) reproduction by supplying needed nutrition, and stabilizes the ecological equilibrium, which is significant in the water self-cleaning system.

Set to be completed by the end of 2020, the park is now a cultural destination for people of all ages and plays a role in ecological education:

The north zone is designed to be a forest park surrounded by watercourses. The open lake and lawns provide a pleasant outdoor space while the various landforms and waterbody create wind corridors to improve regional micro-climate by decreasing temperature and carbon dioxide.

The middle zone is an artificial wetland, which is also a bio-diverse paradise. More than 60 kinds of native flowering plants and 40 native tree species were cultivated for different seasons. An ecological water forest was created, providing natural habitats for wild birds and insects, and showing visitors the process of wetland succession.

The south lake is regarded as a “bio-tank” which collects water from the whole region with a resilient function. It interconnects with a bio-system that is built on green areas and communities, such as stormwater collection gardens and water shed mitigation facilities.

 

Awards:

  • 2020 IFLA AAPME Awards – Award of Excellence, Flood & Water Management