Baltimore MTA

Baltimore, Maryland, United States

Filter projects by:

Market

  • Cities

    Cities EMIA

  • Commercial & Residential

    Mixed Use

    Office

    Residential

    Retail

  • Education

    Colleges & Universities

    Schools

  • Energy

    Carbon capture, utilization and storage

    Geothermal

    Grid modernization

    Hydroelectricity

    Hydrogen

    Microgrids and energy storage

    Offshore wind

    Portfolio Decarbonization and Climate Resilience

    Solar

    Transportation decarbonization

  • Healthcare

    Clinical Hospital

    Life Sciences

    Senior Living

  • Industrial

    Agriculture, Food & Beverage

    Automotive & Heavy Equipment & Machinery

    Digital Infrastructure

    High Performance Logistics

    Manufacturing

    Mining & Metals

    Pharmaceutical/Specialty Chemicals

    Pulp & Paper

  • Justice

  • Leisure

    Arts and Culture

    Hotels and Resorts

    Themed Entertainment and Mixed-Use

  • National Governments

    Civil Works

    Disaster Resilience

    Environment

    Infrastructure & Facilities

    International Development

  • Oil, Gas & Chemicals

    Chemical/Petrochemical

    Downstream

    Midstream

    Upstream

  • Sports and Venues

    Collegiate

    Convention Centers

    Olympics & Mega-Events

    Stadiums & Arenas

  • Transportation

    Air Cargo

    Aviation

    Bridges

    Connected and Autonomous Vehicles

    Freight Rail

    Highways & Roads

    Light Rail

    Mass Transit

    Ports & Marine

    Transportation decarbonization

    Tunnels

  • Water

    Dams & Hydropower

    Flood and coastal resilience

    Industrial Water

    Tunnels, Conveyance, Collection & Distribution

    Wastewater Treatment & Reuse

    Water Treatment

    Watershed and Ecosystem Management

Service

  • Alternative Delivery Models

  • Architecture and Design

    Architecture

    Asset Advisory

    Climate Adaptation

    Community Engagement

    Interior Architecture

    Landscape Architecture

    Planning

    Urban Analytics

    Urban Design

    Urbanism + Planning

  • Asset Management

  • Cities Solutions

  • Construction Management

  • Converged Resilience

  • Cost Management

  • Digital Infrastructure Services

  • Economics

  • Electric Vertical Takeoff and Landing Solutions

  • Engineering

    Ground Engineering

  • Environmental Services

    Air Quality Consulting and Engineering

    Climate Adaptation

    EHS Management Consulting and Compliance

    Environmental and Social Impact Assessment and Permitting

    Environmental Contracting

    Management Information Systems (MIS)

    Remediation, Restoration and Redevelopment

  • Finance

  • Industrial and Commercial Operations and Maintenance

  • IT and Cybersecurity

  • Mobilitics

  • Multinational Investment and Development

  • Pedestrian Modelling (North America)

  • Planning and Consulting

    Geospatial Services

    Pedestrian Modelling

  • Process Development & Implementation

  • Program Management

  • Public-Private Partnerships

  • Risk Management & Resilience

    Critical Infrastructure Protection

  • Simulation Models

    Rail Simulations

  • Strategic consulting

    People + Place Advisory

  • Tunnels, Trenchless Technology and Underground Infrastructure

  • Vertical Transportation Services (North America)

  • Visualization and Virtual Reality

Location

  • Africa

  • Algeria

  • Antarctica

  • Australia

  • Azerbaijan

  • Bahrain

  • Bangladesh

  • Belgium

  • Bolivia

  • Bosnia and Herzegovina

  • Brazil

  • British West Indies

  • Canada

  • Caribbean-Puerto Rico

  • China

  • Colombia

  • Croatia

  • Czech Republic

  • Egypt

  • Eritrea

  • Finland

  • France

  • Germany

  • Greece

  • Greenland

  • Haiti

  • Hong Kong

  • India

  • Indonesia

  • Iraq

  • Ireland

  • Italy

  • Japan

  • Kenya

  • Kingdom of Saudi Arabia

  • Kuwait

  • Liberia

  • Lithuania

  • Malaysia

  • Maldives

  • Mali

  • Malta

  • Mauritania

  • Mexico

  • Monaco

  • Mongolia

  • Montenegro

  • Myanmar

  • Netherlands

  • New Zealand | Aotearoa

  • Norway

  • Oman

  • Panama

  • Papua New Guinea

  • Peru

  • Philippines

  • Poland

  • Portugal

  • Qatar

  • Romania

  • Singapore

  • Slovakia

  • South Africa

  • South Korea

  • Spain

  • Sri Lanka

  • Sweden

  • Switzerland

  • Taiwan

  • Turkey

  • Ukraine

  • United Arab Emirates

  • United Kingdom

  • United States

  • Vietnam

  • Worldwide

Maryland Transit Administration (MTA) Central Control Center

AECOM performed Security Threat and Vulnerability Assessment (TVA) for the Central Control Center (CCC) of Maryland Transit Administration (MTA) in Baltimore, Maryland.  The CCC houses the operations control center for several modes of MTA transit systems including heavy rail, light rail and bus transit systems. The TVA encompassed inspection of the facility and surrounding site and neighborhood, and review of as-built design drawings and specifications, operating and maintenance procedures, encompassing multi-discipline review of structural, electrical, civil and systems engineering.  The physical site and documentation review and inspection was aimed at identifying vulnerabilities of MTA assets to a wide range of security threats. Among the systems reviewed were various voice and data communications, supervisory control and data acquisition, access control, surveillance and alarm systems, information technology and network communications.

The threat and vulnerability assessment encompassed identifying MTA assets for protection, review of their criticality to MTA operations, and quantitative ranking of each asset. Multiple threats were analyzed, encompassing a wide range of credible threats including FBI-defined crimes, terrorist acts, improvised explosive devices attacks in various delivery methods, cybersecurity attacks, internal (employee-induced) and external threats, and other credible threats. The consequences and severity of an impact as a result of one of these threats was assessed based on the impacts to MTA operations as well as to the affected population/ community. This assessment was used to determine an initial risk index.

The process was then repeated to yield a residual risk index after implementation of a comprehensive list of corrective and mitigation measures. These included a wide range of improvements including structural hardening, enhanced systems for surveillance, surveillance software analytics and alarm systems, access control, intrusion detection and alarm, redundancy in critical infrastructure for both facility and systems elements, and a wide range of procedural mitigation measures encompassing operations and maintenance for various MTA and MDOT operations and systems, information technology, network communications, and human resources and personnel protocols and procedures to mitigate internal and external threats.